# CDIAC: Accessing the Market Debt Structuring Остоber 23, 2013 

Anand Kesavan

Siebert Brandford Shank
"Neither a borrower nor a lender be; For loan oft loses both itself and friend, And borrowing dulls the edge of husbandry" - Shakespeare

## Overview of Presentation

A - Current Market Dynamics

B - New Money - Financing Overview

C - Complex Structures
Debt Service Constraints, CABs, Medium Term
Notes, Forwards, Swaps

D - Variable Rate vs. Fixed Rate
A detailed overview of debt mix theory and new trends in variable rate market
"Neither a borrower nor a lender be; For loan oft loses both itself and friend, And borrowing dulls the edge of husbandry" - Shakespeare
"If I knew where interest rates were going, do you think I'd be doing THIS for a living?" - Senior Bond Trader

## MARKET OVERVIEW

## Historical Treasury and Muni Rates - Last 30+ Years

- Currently market rates are near historic lows, creating refunding opportunities

Historical Tax Exempt and Treasury Yields (1981-2013)


## Recent Market Movement

- Over the past three months, economic indicators have begun to show a sustained economic turnaround
- In anticipation of a new era of higher interest rates, the 15 -year MMD rate has risen 110 bps since May 1, 2013
- Despite this increase, the 15 -year MMD has seen a 50 bp decline thus far during the month of September



## Historical 30-Year MMD

- Last week, 30-year MMD decreased by 6 bps and remains slightly above its 5-year average (current level of 4.11\%)
- Current 30-year MMD is 164 bps above its all time low (4.20\% versus 2.47\%)
- Municipal yields recently experienced significant decreases as a result of the FOMC's decision not to begin tapering its bond purchasing program



## Current Municipal Market Yield Curve Dynamics

Historical MMD Lows

|  | Historical <br> Maturity | Date of <br> Low | MMD Levels <br> 9/30/2013 | Difference (bps) |
| :---: | :---: | :---: | :---: | :---: |
| 1-Year | 0.18 | $2 / 2 / 2012$ | 0.18 | - |
| 2 -Year | 0.26 | $2 / 17 / 2012$ | 0.36 | +10 |
| 5 -Year | 0.62 | $9 / 27 / 2012$ | 1.32 | +73 |
| $10-$ Year | 1.47 | $11 / 29 / 2012$ | 2.54 | +107 |
| 15 -Year | 1.8 | $11 / 29 / 2012$ | 3.30 | +150 |
| 20 -Year | 2.1 | $11 / 29 / 2012$ | 3.75 | +165 |
| 25 -Year | 2.42 | $11 / 29 / 2012$ | 4.03 | +161 |
| $30-$ Year | 2.47 | $11 / 29 / 2012$ | 4.11 | +164 |




## MMD Versus UST

- Last week, ratios decreased beyond the five-year maturity as decreases in municipal yields outpaced decreases in Treasury yields
- The five-year ratio remains at somewhat unfavorable levels



## Municipal Cash Flows

- In 2012, cash returning to investors from calls, maturing bonds, and coupon payments totaled more than $\$ 462$ billion, while thus far in 2013 it currently totals approximately $\$ 401$ billion
- In addition, the months of June, July, and August experienced significant municipal bond fund outflows of $\$ 21.9$ billion, creating additional selling pressure on the municipal bond funds


Note: Values for September 2013 and beyond do not reflect calls that have not yet been announced

## Credit Spreads

- As the municipal market has settled after experiencing significant volatility, credit spreads have tightened significantly over the past few weeks
- We have seen a slight tightening in the AA-category as well as more pronounced tightening in the A and BBB categories
- While credit spreads have tightened, primary market pricing spreads have widened relative to historical pricing spreads due to continued bond fund redemptions



## Notable 2011 Alaska Pricing Spreads - IMPORTANCE OF CREDIT

|  |  |  | Spread to MMD (bps) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sale Date | Issuer | Par (\$ mm) | 5 Year | 10 Year | 15 Year | 30 Year |
| 2/4/2011 | Alaska State Housing Finance Corp. (Aa2/AA+/AA+) | \$105.19 | 93 | 88 | 76 |  |
| 5/25/2011 | City of Anchorage, AK GO Bonds A (AA/AA+) | \$28.39 | 24 | 28 | 49 |  |
| 5/25/2011 | City of Anchorage, AK School GO Bonds B \& C (AA/AA+) | \$33.25 | 27 | 34 |  |  |
| 6/5/2011 | City of Koyukuk Revenue Bonds (NR) | \$71.72 |  |  |  | 388 |
| 6/7/2011 | Valdez, AK Marine Terminal Revenue (A2) | \$346.39 | 132 | 140 |  |  |
| 8/25/2011 | Alaska Municipal Bond Bank REF (enhanced) (Aa2/AA) | \$78.12 | 40 | 44 | 54 |  |



## Interpreting the "Scale"

Preliminary Subject to Change
Issuer: MWD
Description: Water Revenue Bonds
Series: 2013
Par Amount: $\$ 250,000,000 *$
Senior Manager: Siebert Brandford Shank
Ratings: Aa1/AAA/AA+
Bond Insurer: None
Call Date: 10 Year Par Call


Why pay today what you can pay for tomorrow?

## STRUCTURING A NEW MONEY ISSUANCE

## Structuring a New Money Issuance

Key Considerations in Structuring a New Money Issuance

- How much will the project cost?
- How long is the life of the asset? Who should bear the cost?
- What is the ideal term of the bonds?
- What is the credit structure? Will a DSRF be needed?
- Where are the revenues to pay back the bonds? Is there a specific constraint?
- Will monies for interest be available immediately?
- Is call optionality desired?


## 5-Year Capital Improvement Plan

- The District anticipates spending nearly $\$ 1.8$ billion in capital expenditures over the next five years:

| FY | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| CIP (\$ in MM) | 236.00 | 346.84 | 369.83 | 351.58 | 290.09 | 189.71 | $1,784.05$ |
| Bond Funded | 250.00 | 100.00 | 250.00 | 230.00 | 175.00 | 220.00 | $1,175.00$ |
| \% of Requirement | $85 \%$ | $29 \%$ | $68 \%$ | $65 \%$ | $60 \%$ | $116 \%$ | $66 \%$ |

- Approximately, $66 \%$ of the 5 -Year CIP is expected to be funded from bond proceeds.

Capital Improvement Program Spending by Type of Expenditures


## Overview of Sources, Uses, and Key Funds

- Par Amount
- Premium/Discount
- Costs of Issuance
- Project Fund/Construction Fund
- Debt Service Fund
- Capitalized Interest Fund
- Debt Service Reserve Fund
- Investing Fund Accounts (GICs, etc)


## SOURCES AND USES OF FUNDS

Muricipality of ABC
Series 2012 Bonds

| Dated Date | $05 / 15 / 2012$ |
| :--- | :--- |
| Delivery Date | $05 / 15 / 2012$ |

Sources:

| Bood Proceeds: |  |
| :---: | :---: |
| Par Amount | 96,370,000.00 |
| Premium | 19,652,399.80 |
|  | 116,022,399.80 |
| Uses: |  |
| Project Fund Deposits: Project Fund | 100,000,000,00 |
| Other Fund Deposits: Capitalized Interest Fund Debt Service Reserve Fund | $\begin{aligned} & 8,718,897.78 \\ & 6,434,450,00 \\ & \hline \end{aligned}$ |
|  | 15,153,347.78 |
| Delivery Date Expenses: |  |
| Underwriter's Discount | $\begin{aligned} & 355,000.00 \\ & 513,323.05 \end{aligned}$ |
|  | 858,323.05 |
| Other Uses of Funds: |  |
|  | 116,022,399.80 |

## Overview of Key Statistics

## Yields

- Arbitrage Yield
- TIC
- All in TIC

Debt Service Statistics

- Total Interest
- Total Debt Service
- Average Annual Debt Service

Key Dates

- Pricing Date
- Delivery Date
- Dated Date
- Last Maturity

Key Expenses

- Cost of Issuance
- Takedown

BOND SUMMARY STATISTICS
Municipality of $A B C$
Series 2012 Bonds

| Dated Date | 05/15/2012 |
| :---: | :---: |
| Delivery Date | 05/15/2012 |
| Last Maturity | 04,01/2042 |
| Arbitrage Yield | 2.424732\% |
| True Interest Cost (IIC) | 3.460823\% |
| Net Interest Cost (NTC) | 3.923985\% |
| All-In TIC | 3.484749\% |
| Average Coupon | 4.948582\% |
| Avernge Life (years) | 19.383 |
| Duration ofIssue (years) | 13.096 |
| Par Ansount | 96,370,000.00 |
| Bond Proceeds | 116,022,399.80 |
| Total Interest | 92,437,597.78 |
| Net Interest | 73,298,521.03 |
| Total Debt Service | 188,907,597.78 |
| Maximum.Annual Debt Service | 6,434,450.00 |
| Average Anmal Debt Service | 6,319,332.02 |


| Bond Coumponent | Par <br> Vahe | Price | Avernge <br> Coupon | Avenge <br> Life |
| :--- | ---: | ---: | ---: | ---: |
| Serial Bond | $46,705,000.00$ | 123.096 | $4.837 \%$ | 12.583 |
| Tem 2038 | $25,860,000.00$ | 118.487 | $5.000 \%$ | 23.520 |
| Term 2042 | $22,805,000.00$ | 115.872 | $5.000 \%$ | 28.439 |
|  | $96,370,000.00$ |  |  | 19.383 |

Par Value

+ Accrued Interest
+ Premium (Discoimt)
- Underwiter's Discoumt
- Cost of Issuance Expense
- Other Amounts

$96.370,000.00$
19,652,399.80
$-513,323.05$
$115,509,076.75$
05/15/2012
3.460823\%

115,154,076.75
05/15/2012
$3.484749 \%$
$116,022,399.80$
05/15/2012
2.424732\%

## Key Page: "Bond Pricing"

- Serial Bonds vs. Term Bonds
- Coupons and Yields
- Takedown
- Yield to Call vs. Yield to Maturity

| Bond Component | $\begin{aligned} & \text { Maurity } \\ & \text { Date } \end{aligned}$ | BOND PRICING <br> Muticipality of ABC <br> Series 2012 Bends |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  | Amount | Raxe | Yield | Price | Yield to <br> Maburity | Premium (-Discount) | Takedown |
| Serial Bond. |  |  |  |  |  |  |  |  |
|  | 04/01/2015 | 1,785,000 | 3.000\% | 0.450\% | 107.282 |  | 129,983,70 | 2500 |
|  | 04/01/2016 | 1,840,000 | 3,000\% | 0.640\% | 109.024 |  | 166,041,60 | 2500 |
|  | 04/01/2017 | 1,900,000 | 4.000\% | 0.760\% | 115.435 |  | 294,215.00 | 2300 |
|  | 04/01/2018 | 1,975,000 | 4.000\% | 0.380\% | 117.833 |  | 352,201.75 | 2500 |
|  | 04/01/2019 | 2,050,000 | 4.000\% | 1.600\% | 119.850 |  | 407,745.00 | 3.750 |
|  | 04/01/2020 | 2,135,000 | 4.000\% | 1.120\% | 121.656 |  | 462,355,60 | 3.750 |
|  | 04/01/2021 | 2,220,000 | 4,000\% | 1.240\% | 123.133 |  | 513,552.60 | 3.750 |
|  | 04/01/2022 | 2,310,000 | $5.000 \%$ | 1.360\% | 133536 |  | 774,681.60 | 3.750 |
|  | 04/01/2023 | 2,425,000 | 5,000\% | 1.480\% | 132235 C | 1.735\% | 781,693,75 | 3.750 |
|  | 04/01/2024 | 2,545,000 | $5.000 \%$ | 1.600\% | 130949 C | 2051\% | 787,652.05 | 3.750 |
|  | 04/01/2025 | 2,675,000 | $5.000 \%$ | $1.720 \%$ | 129677 C | 2321\% | 793,899,75 | 5000 |
|  | 04/01/2026 | 2,805,000 | $5.000 \%$ | 1.340\% | 128.420 C | 2555\% | 797,181.00 | 5.000 |
|  | 04/01/2027 | 2,945,000 | $5.000 \%$ | 1.960\% | 127.177 C | $2760 \%$ | 800,362.65 | 5.000 |
|  | 04/01/2028 | 3,095,000 | 5,000\% | 2080\% | 125.949 C | 2942\% | 806,121.55 | 5.000 |
|  | 04/01/2029 | $3,250,000$ | $5.000 \%$ | 2200\% | 124.734 C | 3.106\% | 806,835,00 | 5.000 |
|  | 04/01/2030 | 3,410,000 | 5.000\% | 2320\% | 123534 C | 3.253\% | $802,509.40$ | 5.000 |
|  | 04/01/2031 | 3,580,000 | $5.000 \%$ | 2440\% | 122347 C | 3.383\% | 800,022.60 | 5.000 |
|  | 04/01/2032 | $3,760,000$ | $5.000 \%$ | 2560\% | 121.174 C | 3511\% | 796,142.40 | 5.000 |
|  |  | 46,705,000 |  |  |  |  | 11,067,182.00 |  |
| Teme 2008: |  |  |  |  |  |  |  |  |
|  | 04/01/2038 | 26,860,000 | 5.000\% | 2340\% | 118.437 C | 3.863\% | 4,965,608.20 | 5.000 |
|  |  |  |  |  |  |  |  |  |
|  | 04/01/2042 | 22,805,000 | $5.000 \%$ | 3.120\% | 115.872 C | 4.076\% | 3,619,609,60 | 5.000 |
|  |  | 96,370,000 |  |  |  |  | 19,652,399.80 |  |

## Shaping Debt Service

- Level Debt Service
- Deferred Debt Service
- Wrapped Debt Service
- "Barbell" Debt Service

Musicipality of ABC
Series 2012 Bends

| Perisd <br> Enling | Priseipal |  | Total <br> Inlerest | Capitalined <br> Inlerest Fund | Nervice Debs Service |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Preliminary Estimate of Annual Debt Service Costs

FY 2012-17 Capital Improvement Program ${ }^{(1)}$
(Annual Debt Service Cost Estimates) - Level Debt Service)


FY 2012-17 Capital Improvement Program ${ }^{(1)}$
(Annual Debt Service Cost Estimates) - Wrap Debt Service


## New Money Issuance with Fixed Rate Bonds - 2013 Senior Lien Financing

- Currently $\$ 800$ million of new money needs in 2013 and 2014
- Siebert Brandford Shank analyzed the following four fixed rate alternatives for the financing:
- Scenario 1: Level Debt Service
- Scenario 2: Deferred Level Debt Service
- Scenario 3: Wrap Debt Service with Final Maturity 2041
- Scenario 4: Barbell Debt Service with Final Maturity 2041



## Occam's Razor: "Entia non sunt multiplicanda praeter necessitatem" - or, the simpler solution is always better!

When Occam's Razor fails....

## ESOTERIC FINANCING ALTERNATIVES

## Esoteric Strategies: Section Overview

- Shaping around a Debt Service Constraint/Coverage
- CABs and Convertible CABs
- Medium Term Notes
- The Swap Market


## Overview of Current Debt Profile



[^0]
## SHAPING AROUND A STRICT REVENUE CONSTRAINT

- Utilize linear optimization procedures to minimize aggregate debt service while staying within the tax constraint


| $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $149,993,648$ | $131,625,853$ | $131,626,292$ | $131,627,015$ | $131,627,348$ | $131,625,870$ | $131,625,696$ |
| 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total |
| $131,629,101$ | $131,627,992$ | $131,628,767$ | $131,627,928$ | $109,996,489$ | $132,499,395$ | $1,708,761,396$ |

## Summary of Debt Service Coverage

\left.| Debt Service Coverage |  |
| :---: | :--- | :--- |
| All Parity | Water Revenue Bond |
| Obligations |  |$\right]$| FY | Level | Wrap |
| :---: | :--- | :--- |
| 2012 | $180 \%$ | $180 \%$ |
| 2013 | $189 \%$ | $189 \%$ |
| 2014 | $224 \%$ | $225 \%$ |
| 2015 | $209 \%$ | $213 \%$ |
| 2016 | $208 \%$ | $213 \%$ |
| 2017 | $200 \%$ | $207 \%$ |
| 2018 | $191 \%$ | $199 \%$ |
| 2019 | $193 \%$ | $201 \%$ |
| 2020 | $194 \%$ | $202 \%$ |
| 2021 | $211 \%$ | $220 \%$ |
| 2022 | $199 \%$ | $207 \%$ |
| 2023 | $208 \%$ | $217 \%$ |
| 2024 | $202 \%$ | $210 \%$ |
| 2025 | $211 \%$ | $221 \%$ |
| 2026 | $212 \%$ | $217 \%$ |
| 2027 | $212 \%$ | $217 \%$ |
| 2028 | $215 \%$ | $219 \%$ |
| 2029 | $216 \%$ | $218 \%$ |
| 2030 | $215 \%$ | $215 \%$ |
| 2031 | $222 \%$ | $224 \%$ |
| 2032 | $222 \%$ | $216 \%$ |
| 2033 | $222 \%$ | $217 \%$ |
| 2034 | $222 \%$ | $216 \%$ |
| 2035 | $222 \%$ | $217 \%$ |
| 2036 | $222 \%$ | $217 \%$ |
| 2037 | $223 \%$ | $218 \%$ |
| 2038 | $284 \%$ | $239 \%$ |
| 2039 | $392 \%$ | $311 \%$ |
| 2040 | $397 \%$ | $314 \%$ |
| 2041 | $402 \%$ | $317 \%$ |
| 2042 | $976 \%$ | $592 \%$ |
|  |  |  |

Annual Debt Service Coverage ${ }^{(1)(2)}$


Level vs. Wrap Amortization Key Statistics Comparison

| Series (FY 2012 - 2017) | Level | Wrap |
| :--- | ---: | ---: |
| Total Par Amount | $1,225,000,000$ | $1,225,000,000$ |
| Total Bond Proceeds | $1,250,952,350$ | $1,248,631,159$ |
| Combined TIC | $4.83 \%$ | $4.89 \%$ |
| Gross Debt Service ${ }^{(1)}$ | $2,380,874,983$ | $2,830,176,667$ |
| Average Life | 21.41 | 28.73 |

(1) Reflects debt service for all parity obligations, including full implementation of FY 2012-17 capital improvement program
(2) Debt service does not reflect BAB interest subsidies.

## What is a "CAB"?

"CAB" = Capital Appreciation Bond, or a bond that does not pay coupon payments, but only a lump sum at maturity

Issuers often use CABs when facing a strict budget constraint to avoid any interest in the near term.

CABs end up costing more in total debt service since the duration of the loan is longer and investors demand a higher spread due to risk.

2012 Financing Analysis -- \$350 Million Project Fund, 35-Year Ascending Debt ${ }^{(1)}$

|  | All CIBs | Backloaded CABs | Upfront CABs | Backloaded CCABs | Backloaded CCABs + CAPI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Par Amount (\$) | 373,435,000 | 362,129,833 | 376,404,894 | 373,333,505 | 428,117,818 |
| CCABs/CABs PV Amount (\$) | N/A | 124,999,833 | 124,999,894 | 124,998,505 | 62,497,818 |
| CCABs/CABs Final Maturity Value (\$) | N/A | 640,065,000 | 356,930,000 | 196,755,000 | 98,665,000 |
| CAPI Through October 1, 2015 (\$) | N/A | N/A | N/A | N/A | 54,987,734 |
| Maturity Structure | CIBS: 2021-2047 | $\begin{aligned} & \text { CIBS: 2021-2032; } \\ & \text { CABs: 2032-2047 } \end{aligned}$ | $\begin{array}{r} \text { CABs: 2021-2040; } \\ \text { CIBs: 2040-2047 } \end{array}$ | $\begin{aligned} & \text { CIBS: 2021-2042; } \\ & \text { CCABs: 2042-2047 } \end{aligned}$ | $\begin{aligned} & \text { CIBS: 2021-2045; } \\ & \text { CCABs: 2045-2047 } \end{aligned}$ |
| Average Life (years) | 27.9 | 19.0 | 27.4 | 27.1 | 27.4 |
| All-In-TIC | 5.158\% | 5.400\% | 5.396\% | 5.414\% | 5.288\% |
| Avg. Annual D/S 2013-2020 (\$) | 19,125,590 | 11,732,995 | 13,061,275 | 12,582,255 | 11,783,086 |
| Maximum Annual D/S (\$) | 39,053,013 | 49,240,000 | 47,636,150 | 48,149,676 | 49,430,703 |
| NPV of D/S (\$) ${ }^{(2)}$ | 375,540,725 | 394,513,404 | 392,576,833 | 392,899,064 | 390,573,524 |
| NPV D/S (Dis)Savings vs. All ClBs | N/A | $(18,972,680)$ | $(17,036,108)$ | $(17,358,339)$ | $(15,032,799)$ |

[^1]
## Current Interest Bonds vs. Capital Appreciation Bonds

## Average CAB Spread at Issuance - Maturity-by-Maturity <br> (Since 8/1/11) <br> 

CIBs vs. CABs ${ }^{(1)(2)}$


[^2]32
(2) AA- yields

## Alternate New Money Financing Considerations

- A 30-Year fixed rate financing is the most conservative structure for issuing new money water revenue bonds.
- However, due to the current steepness of the yield curve, we recommend that the District also consider lowering the cost of funds for future bond issues by accessing the shorter end of the yield curve
- Medium Term Notes (MTNs) and Floating Rate Notes (FRNs) allow the District to take advantage of the lower rates currently available on the shorter end of the yield curve

| Financing Option | Description | Key Considerations |
| :--- | :--- | :--- |
| Medium Term Notes (MTNs) | - Issue Notes in the 8- to 10-year | • Helps MWD diversify debt profile while allowing for |
|  | range; may be refinanced again in | borrowing on short end of steep yield curve. Bond |
|  | the shorter portion of the curve to | documents will need to be reviewed to determine |
|  | provide blended savings relative to a | whether "Balloon" maturities are permitted. |
|  | single fixed rate issue amortized over | Advance/current refund MTNs as necessary. Some |
|  | 20 or 30 years | exposure to higher rates in future |

Interest Rate Risk Spectrum


## Medium Term Notes Concept

- Medium Term Notes ("MTN") principal is amortized as a bullet in one or several maturities from 8-10 years
- Issued in place of maturities in the 20-30 year range in order to reduce borrowing costs
- Anytime during the term of the MTNs, issuers can use its advance refunding capability to extend the MTNs to the original desired maturity
- MTNs avoid and/or mitigate many of the risks associated with short-term variable rate debt including liquidity, remarketing, LOC bank, counterparty and short-term interest rate risk
- Issuers should weigh the potential benefits of MTNs against several considerations including refinancing risk and interest rate risk
- A sharp and sustained rise in interest rates may cause the refinancing interest rate to exceed the breakeven rate, resulting in dissavings relative to locking in long-term rates today
- MTNs should be sized and structured based on the District's risk tolerance and as a small percentage of its overall debt portfolio, similar to short-term variable rate debt


## MTN SAVINGS ANALYSIS (CONT'd)

- As shown below, the MTN/Fixed rate financing provides $\$ 4.2$ million in NPV savings relative to a $100 \%$ fixed rate financing
- Assumes the MTN will be called on its first call date eight years from now in June 2019 and refinanced as a term bond with sinking fund installments from 2037-2041 at the current 20-year AMT rate plus 75 basis points (7.12\%)


MTN/Fixed Rate (Initial Financing)


MTN/Fixed Rate (2019 Refinancing)


Summary of GO New Money Structuring Alternatives -- \$400 million Project Fund

|  | 30 | Year Level Fixed |
| :--- | ---: | ---: |
| MTN/Fixed Rate (Blended) |  |  |
| Par Amount in 2011 (\$) | $476,945,000$ | $466,525,000$ |
| MTN Par (\$) | $\mathrm{N} / \mathrm{A}$ | $123,425,000$ |
| Non-MTN Par in 2011 (\$) | $476,945,000$ | $343,100,000$ |
| Project Fund Deposit (\$) | $394,327,190$ | $394,327,190$ |
| Maturity Structure | $2014-2041$ | $2014-2041 ; 2020 \mathrm{MTN}$ |
| All-In-TIC ${ }^{(1)}$ | $6.152 \%$ | $5.966 \%$ |
| Initial MTN Yield | $\mathrm{N} / \mathrm{A}$ | $5.050 \%$ |
| Assumed MTN Refinancing Yield in 2019 | $\mathrm{~N} / \mathrm{A}$ | $7.120 \%$ |
| Average Annual Debt Service (\$) | $35,759,513$ | $35,722,802$ |
| NPV of Debt Service(\$) ${ }^{(\mathbf{2 )}}$ | $488,675,041$ | $484,454,487$ |
| NPV Debt Service (Dis)Savings vs. Level Debt (\$) | $\mathrm{N} / \mathrm{A}$ | $4,220,554$ |

(1) The All-In TIC of the MTN/Fixed Rate Scenario reflects the combined issuance of the MTN and its subsequent refinancings
(2) Discounted @ discount rate of $5 \%$

## MTN SAVINGS Analysis

- Assuming the following:
- The District issues a $\$ 250$ million 8 -year MTN maturing in 2020 in lieu of selling 30 -year fixed rate level debt at $3.99 \%{ }^{(1)}$
- The MTN is issued with a 8-year maturity and an 7-year par call at a rate of $2.53 \%^{(2)}$
- Principal is amortized on a 30-year basis during the first seven years with a majority of the principal due in year 8
- The bullet due in 2020 would be refinanced in 2019 and amortized from 2020 through 2042.
- Assuming the MTN is refinanced as level debt amortizing principal from 2020 to 2042 in 2019 (one year prior to maturity), interest rates could go as high as $5.28 \%$, a 181 basis point rise relative to the current 20year AAA MMD yield at the time of the refinancing to achieve economic break-even from this strategy ${ }^{(3)}$
- To achieve $5 \%$ present value savings versus selling 30-year fixed rate bonds today, the MTNs would need to be refinanced at a yield of $4.43 \%$, a 96 basis point rise relative to the current 20 -year AAA MMD yield ${ }^{(4)}$


[^3]
## Forward Delivery Bonds

The problem: An issuer has bonds callable in 2013 but they are not legally advance refundable. The issuer would like to lock in savings, taking advantage of today's low rates.

The Solution: Price bonds in today's market, locking in today's rates. However, bonds are not actually delivered until 2013. To compensate for the delay, investors will charge an additional "forward premium."
"To Fix or Not to Fix - That is the Question"

## VARIABLE RATE ALTERNATIVES

## Section Overview

- Overview and Historical Context
- True Costs of Variable Rate Bonds
- Risk Factors in the Post-Crisis World
- The Appropriate Debt Mix and ALM
- Today's types of Variable Rate Debt
- $Q \& A$


## I. Overview of Floating Rate Bonds

Mechanics

- Bonds reset rates periodically as interest rates change.
- Usually need a bank "letter of credit" given tender risk

Why consider short-term bonds?

- Lower Interest Cost
- Investors may overcharge for long-term credit
- Diversify Liability (Asset Liability Management)
- Allows constant flexibility

Why NOT consider short-term bonds?

- RISKS!!!!
- Hard to value uncertainty - responsible use of taxpayer dollars?


## A Historical Context

- Pre-Crisis
- Insurance, Swaps, ARCs very prevalent
- LOC Cost < 10 BPS
- 2008 Crisis
- Insurance Vanishes - Auction Rates Dead
- ARCS reset > 10\% after insurance dissappears
- "Swaps" market is virtually finished
- LOC Cost > 100++ BPS... Issuers restructure debt
- Post-Crisis
- Low floating rates
- FRNs, Mandatory Puts, VRDBs, Private Placements
- LOC Cost - Stabilizing around 40-80 BPS, but hard to find
- A renewed focus on Risk


## VR Costs - A Snapshot Rate Comparison

SIFMA vs. RBI


## Costs of Traditional Floaters

1 - Interest Rate (0.1\%-5.0\%)
Historically fairly low, usually tracks SIFMA index

2 - Credit Support Costs (5 bps - 400 bps)
LOC, SBPA, Liquidity, Insurance
Can be short-term and uncertain
High variation over the past decade

## 3 - RISKS!

Can be tough to value properly

## Rethinking "Risk" in the Frontier



What if our convention "risk" measures were wrong?

## II. VR Costs - The Great Trade-Off



Risk


## Fixed Rate Bonds



Variable Rate Bonds


Variance 120 BPS

## III. VR Risks - Pre-Crisis Risk Disclosure

"The following 47 risks are associated with this product, but are not expected to materially affect the City's debt profile "
7. Operational Risk
8. "PUT" Risk
9. Market Access Risk
10. Basis Risk
11. Credit Risk

Pre Crisis Example:
"Non Material Risk" = Bank Counterparty Risk
... because "large banks never go bankrupt but large cities do"

## III. The Ubiquitous Risk Palette

1. Interest Rate risk
2. "PUT" Risk
3. Liquidity Risk
4. Counterparty Risk
5. Credit Rollover Risk
6. Headline/Political Risk
7. Operational Risk
8. Downgrade Risk
9. Market Access Risk
10. Basis Risk
11. Credit Risk
12. Swap Risks (MTM)

2013 Issuers take these risks much more seriously than 2003 issuers.

|  | Summary | Products Effected | Concern Level | Potential Solutions |
| :---: | :---: | :---: | :---: | :---: |
| Interest Rate Risk | General market interest rate fluctuations can be unpredictable | All | High | Caps/Collars |
| Put Risk | Bondholders can "put" the bonds back to MA on any reset date | VRDBs |  | Replace with FRNs, Syn. Floaters |
| Liquidity Risk (Cashflow) | Cash to cover interest rate spikes may need appropriation | All | Medium | Stabilization Fund |
| Political Risk | Hindsight is 20/20 to newspapers and general population - Headline Risk | All | Med/High | Swap Policies, Academic Studies, Advisors |
| Operational Risk | Operational staff to process changing bond payments can be bottleneck | All | Low | Technology, Staffing |
| Rollover Risk | usually only 1-3 years and need to be renewed - renewal costs and availability vary highly | VRDBs | High | Replace with FRNs, Syn. Floaters |
| Market Access Risk | At maturity or credit renewal, MA may need to replace with long term fixed rate bonds at higher rates | VRDBs, FRNs | Low (for MA only) | VRDBs, Short Maturity FRNs |
| Swap Related Risks | Collateral Posting, Counterparty Risk, Termination events | Synthetic Floaters | Low | Synthetic Floaters |
| Basis Risk | Cash earnings and variable rates dislocate, as one example | All | Medium | n/a |
| Credit Risk | MA credit gets worse, short-term bondholders demand higher rates at remarketing | VRDBs | Low | Replace with FRNs, Syn. Floaters |

## IV. Appropriate Debt Mix?

How much variable rate is appropriate in a public debt issuer's portfolio???

- 50-70\% (norm in international and corporate markets)
- 20\% (traditional muni rating agency guidelines)
- $0-5 \%$ (new norm in municipal market)
- How much risk can the municipality TRULY assume? How much can it transfer to other parties and at what cost?
- What strategies does an issuer to have answer this question?
- We explore two options next


## IV. Debt Mix - Asset Liability Management

A more sophisticated approach to Debt Management

- Tactics - Data Collection, Multivariate Regression, Monte Carlo Simulation

IV. Hypothetical Rates/Revenues - A Simpler Approach


We must expect the unexpected - Can your tax base handle the RED boxes????

## IV. Alternatives to Fixed Rate Bonds

- VRDBs
- Auction Rate Securities (all but dead)
- Floating Rate Notes
- Mandatory Tender Bonds
- Medium Term Notes
- Synthetic Fixed/Synthetic Floating (rare now)
- Interest rate caps/collars
- Direct Private Placement


## V. Types of Short-Term Bonds

|  | Auction Rate | VRDBs | Floating Rate Note | Syntetic Floating |
| :---: | :---: | :---: | :---: | :---: |
| Bond Maturity | 30 Years | 30 Years | 1-4 Years | 30 Years |
| "Real" Maturity | Insurer Term | LOC Term 1-5 years | 1-4 Years | Flexible |
| Interest Rate Risk | Yes | Yes | Yes | Yes |
| Put Risk | No | Yes | No | No |
| Rollover Risk | Maybe | Yes | Yes | Maybe |
| Credit Risk | Yes | Yes | No | Some |
| "Swap" Related Risks | No | No | No | Yes |
| Credit Faciliity | Insurance | LOC or SBPA | None | Flexible |
| Key Takeaway | No Longer Feasible after 2008 insurance debacle | LOC terms can be elusive and costly Rollover risk is key | Cost effective in shorter terms only - Bonds Mature soon requiring takeout | Swap risks including termination and collateral can be troublesome |

## V. Summary of Variable Rate Financing Alternatives

| Option | Benefits | Considerations |
| :---: | :---: | :---: |
| VRDBs | - Low variable interest rates in current market <br> - Provides redemption flexibility as bonds are callable at par at any time <br> - Established market acceptance | - LOC renewal and bank credit exposure risk <br> - LOC pricing is currently at a significant premium versus historical averages <br> - Difficult to secure long-term bank commitments <br> - Refinancing and interest rate risk <br> - Exposure to and reliance on Bank's credit ratings |
| Indexed <br> Floating Rate <br> Notes ("FRNs") | - No LOC or remarketing fees <br> - No exposure to bank credit risk or LOC renewal availability <br> - Low variable interest rates in current market <br> - Can include a call feature 6 months prior to maturity <br> - Can use a long maturity and mandatory tender structure | - Market access risk associated with future take-out of the bonds <br> - Refinancing and interest rate risk <br> - Need to consult bond documents and Bond Counsel to allow for longer maturity amortization in regards to the ABT and mode change if for a remarketing |
| Mandatory <br> Tender <br> Bonds/BANs | - Locks in borrowing costs on the short-end of the yield curve <br> - Can be structured with a call provision 6 months prior to maturity <br> - Can be structured using tender dates from one to five years allowing for smaller block size, reducing liquidity concerns <br> - No ongoing LOC and remarketing fees <br> - No exposure to bank credit risk and LOC renewal | - Market access risk associated with future put bond takeout <br> - Requires discussions with rating agencies to establish guidelines for maximum par amount <br> - Refinancing and interest rate risk <br> - Better execution for "hard put" structure |
| Medium Term Notes (MTNs) | - Issue Notes in the 8- to 10-year range; may be refinanced again in the shorter portion of the curve to provide blended savings relative to a single fixed rate issue amortized over 20 or 30 years | - Helps diversify debt profile while allowing for borrowing on short end of steep yield curve. Bond documents will need to be reviewed to determine whether "Balloon" maturities are permitted. Advance/current refund MTNs as necessary. Some exposure to higher rates in future |

## Direct Private Placements

## Why do a Public Offering at all???

- Alternative to expiring LOCs
- Limited public disclosure
- Ease of execution, size restrictions


## $08 A$

Anand Kesavan<br>Senior Vice President<br>Head of Quantitative Group

Siebert Brandford Shank
akesavan@sbsco.com



[^0]:    (1) CABs \& Convertible CABs valued at initial amount

[^1]:    1) Assumes current market rates, 11/1/2012 delivery, \$7/bond COI and DSRF deposit of $\$ 25$ million
    2) Discounted to $11 / 1 / 2012 @ 5 \%$
[^2]:    (1) Source: Bloomberg Generic Yields

[^3]:    (1) 30 -Year AAA MMD as of October 18, 2011 + 31 basis points (Aa1/AAA/AA+ water revenue credit).
    (2) 8 Year AAA MMD as of October 18, 2011 plus 20 basis points.
    (3) Economic breakeven point determined assuming a discount rate of $5 \%$.
    (4) As of October 18, 2011; Savings expressed as a percentage of target par amount (\$250 million) and discounted @ 5\%.

