# CDIAC MUNICIPAL DEBT ESSENTIALS 

## Bond Math: A Deeper Dive

Bobby Cheung, Director, KNN Public Finance, LLC
public finance

SESSION 5| BOND MATH


## KNN Public Finance, LLC

- KNN Public Finance, LLC is an employee-owned independent municipal advisory firm.
- Registered with the SEC and MSRB.
- Staff of 18, with offices in the Bay Area and Los Angeles.
- SEC rules assign a fiduciary duty to the municipal advisor - the highest standard of care; by law, we must put our clients' interest ahead of our own.


## Why Bond Math is Important

- Management of existing debt portfolio.
- Priorities for new debt issuance.
- Understand impact of movements in the market upon debt.


## Agenda

- Overview of Basic Bond Math Concepts
- Case Study - Applying Bond Math Concepts
- Impact of Recent Market Movements
- Frequently Asked Questions
- Audience Q\&A


## Section 1:

Overview of Basic Bond Math Concepts

## General Bond Terminology

- Principal or Par Amount Stated amount borrowed via a loan
- Maturity
- Interest / Coupon Rate
- Dollar Price
- Yield
- CUSIP Number

Date at which principal is due to the bondholder, typically paid annually

Interest due to the investor, typically paid semiannual

The price an investor will pay to receive the yield

Rate of return to the investor based on price paid on investment
Unique identification number assigned to registered bonds

## Sample from Inside Cover of Official Statement

Maturity
(June 1)
2023
2024
2025

Principal Amount

Interest Rate
$5.000 \%$
5.000
5.000

Yield
$1.630 \%$
1.750
1.810

Price
102.619 105.687
108.626

CUSIP No. ${ }^{\dagger}$
587657EX1 587657EY9
587657EZ6

## General Bond Terminology (continued)

- Dated Date
- Delivery Date
- Yield to Maturity
- Call Date
- Call Premium
- Basis Point
- Serial Bond
- Term Bond
- Amortization

Date from which an investor is entitled to receive interest

Settlement date of the bond (closing date for primary bond issuance)
Rate of return to the investor if the investment is held to maturity
Redemption date of a bond prior to maturity at the option of the issuer
Any amount over $100 \%$ which is paid to the investor when bonds are called
$1 / 100$ of $1 \%$

Bond with single maturity

Bond with sinking fund principal payments over multiple years

The shape of principal repayment of a loan

## Bond Statistics Terminology

- True Interest Cost (T.I.C.) Blended cost of borrowing that factors in time value of money
- All-in T.I.C.
- Net Interest Cost (N.I.C.) Blended cost of borrowing that factors in the average interest rate weighted for the time to maturity and does NOT factor in the time value of money
- Arbitrage Yield

Blended cost of borrowing that factors in time value of money AND costs of issuance

Maximum rate that tax exempt bond proceeds can earn

## Bond Pricing Terminology

## Par Bond

- Coupon and Yield are equal
- Price equal to 100.000
- Every \$1,000 of bonds issued will produce exactly \$1,000 in proceeds, before deduction of underwriter's discount


## Premium Bond

- Coupon is greater than Yield
- Price greater than 100.000
- Every \$1,000 of bonds issued will produce over $\$ 1,000$ in proceeds


## Discount Bond

- Coupon is less than Yield
- Price less than 100.000
- Every \$1,000 of bonds issued will produce less than $\$ 1,000$ in proceeds


## Bond Pricing Methodology

## Par Bonds

- If coupon and yield are the same, the price of the bond is 100.000.


## Premium Callable Bonds

- Bond price must be calculated utilizing the lower of the yield (to call) versus the yield to maturity.
- For premium callable bonds, the yield to call is lower than the yield to maturity.


## Bond Price Rounding

- Prices are shown as truncated to the $3^{\text {rd }}$ decimal place.


## Changes in Yield and Bond Price

- Yield and Price are inversely related
- For fixed rate bonds that have already priced, as market yields increase, the dollar price of the fixed-rate bond decreases:

- As yields decrease, price of a fixed rate bond increase
$\left.\left.\begin{array}{|c|}\hline \begin{array}{c}\text { Yield } \\ \text { Goes } \\ \text { DOWN }\end{array} \\ \hline\end{array} \right\rvert\, \begin{array}{c|}\hline \text { Price } \\ \text { Goes } \\ \text { UP }\end{array}\right]$


## Section 2: <br> Case Study - Applying Bond Math Concepts

## Case Study: Summary of Transaction

- New money Certificates of Participation to fund a new California County jail facility.
- Borrowing term of 25 years.
- Structured with level fiscal year payments.
- Funded costs of issuance, including bond insurance and surety bond policy.
- 10-year par optional call provision.
- Sold via competitive method of sale.


## Sources and Uses

- Par plus premium equals Total Sources.
- Sum of all costs, including project cost, equals Total Uses.
- Total Sources equals Total Uses.

| Sources and Uses |  |
| :---: | :---: |
| Sources |  |
| Par Amount: | \$28,975,000 |
| Premium: | 3,619,644 |
| Total Sources: | \$32,594,644 |
| Uses: |  |
| Project Fund: | \$32,000,000 |
| Cost of Issuance: | 285,000 |
| Underwriter's Discount: | 123,992 |
| Bond Insurance Premium: | 138,158 |
| Surety Bond Premium: | 43,702 |
| Rounding: | 3,792 |
| Total Uses: | \$32,594,644 |

## Bond Pricing Report

- Pricing consisted of all serial bonds.
- All maturities were priced at a premium structure, where the coupon is higher than the yield, except the 2046 maturity, which priced at a discount.
- Premium bonds that are subject to optional call are priced assuming the bonds are called.
- We also show the YTM, which is the rate of return the investor receives if the bonds are NOT called.
- For discount bonds, the "yield" is the YTM.

| Date | Principal <br> Maturity | Coupon / <br> Interest Rate | Yield | Yield to <br> Maturity | Dollar <br> Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6/1/2023 | \$640,000 | 5.00\% | 1.63\% |  | 102.619 |
| 6/1/2024 | 640,000 | 5.00\% | 1.75\% |  | 105.687 |
| 6/1/2025 | 675,000 | 5.00\% | 1.81\% |  | 108.626 |
| 6/1/2026 | 705,000 | 5.00\% | 1.91\% |  | 111.231 |
| 6/1/2027 | 740,000 | 5.00\% | 1.92\% |  | 114.017 |
| 6/1/2028 | 780,000 | 5.00\% | 2.09\% |  | 115.778 |
| 6/1/2029 | 820,000 | 5.00\% | 2.20\% |  | 117.558 |
| 6/1/2030 | 860,000 | 5.00\% | 2.27\% |  | 119.379 |
| 6/1/2031 | 900,000 | 5.00\% | 2.35\% |  | 120.922 |
| 6/1/2032 | 945,000 | 5.00\% | 2.42\% |  | 122.357 |
| 6/1/2033 | 995,000 | 5.00\% | 2.54\% | 2.72\% | 121.192 c |
| 6/1/2034 | 1,045,000 | 5.00\% | 2.65\% | 2.96\% | 120.136 c |
| 6/1/2035 | 1,095,000 | 5.00\% | 2.73\% | 3.15\% | 119.375 c |
| 6/1/2036 | 1,150,000 | 5.00\% | 2.80\% | 3.30\% | 118.713 c |
| 6/1/2037 | 1,210,000 | 5.00\% | 2.88\% | 3.44\% | 117.963 c |
| 6/1/2038 | 1,270,000 | 5.00\% | 2.97\% | 3.57\% | 117.125 c |
| 6/1/2039 | 1,330,000 | 5.00\% | 3.03\% | 3.67\% | 116.570 c |
| 6/1/2040 | 1,400,000 | 5.00\% | 3.10\% | 3.76\% | 115.927 c |
| 6/1/2041 | 1,470,000 | 5.00\% | 3.19\% | 3.86\% | 115.107 c |
| 6/1/2042 | 1,540,000 | 5.00\% | 3.21\% | 3.91\% | 114.926 c |
| 6/1/2043 | 1,620,000 | 4.00\% | 3.60\% | 3.77\% | 103.270 c |
| 6/1/2044 | 1,685,000 | 4.00\% | 3.70\% | 3.83\% | 102.439 c |
| 6/1/2045 | 1,750,000 | 4.00\% | 3.80\% | 3.89\% | 101.617 c |
| 6/1/2046 | 1,820,000 | 3.75\% | 3.90\% |  | 97.684 |
| 6/1/2047 | 1,890,000 | 5.00\% | 3.50\% | 4.20\% | 112.333 c |
| Total: | 28,975,000 |  |  |  |  |

## Debt Service and Amortization

- The principal amortization schedule created a level overall payment structure, by fiscal year, similar to monthly mortgage or car loan payment.
- In this example, the short first period resulted in slightly less payment in first year.
- Repayment of principal increases over time while payment of interest decreases over time.

| Debt Service Schedule |  |  |  |
| :---: | ---: | ---: | ---: |
| FY <br> Ending | Principal <br> Amount | Interest <br> Cost | Total <br> Cost |
|  |  |  |  |
| 2023 | $\$ 640,000$ | $\$ 1,081,257$ | $\$ 1,721,257$ |
| 2024 | 640,000 | $1,343,450$ | $1,983,450$ |
| 2025 | 675,000 | $1,311,450$ | $1,986,450$ |
| 2026 | 705,000 | $1,277,700$ | $1,982,700$ |
| 2027 | 740,000 | $1,242,450$ | $1,982,450$ |
| 2028 | 780,000 | $1,205,450$ | $1,985,450$ |
| 2029 | 820,000 | $1,166,450$ | $1,986,450$ |
| 2030 | 860,000 | $1,125,450$ | $1,985,450$ |
| 2031 | 900,000 | $1,082,450$ | $1,982,450$ |
| 2032 | 945,000 | $1,037,450$ | $1,982,450$ |
| 2033 | 995,000 | 990,200 | $1,985,200$ |
| 2034 | $1,045,000$ | 940,450 | $1,985,450$ |
| 2035 | $1,095,000$ | 888,200 | $1,983,200$ |
| 2036 | $1,150,000$ | 833,450 | $1,983,450$ |
| 2037 | $1,210,000$ | 775,950 | $1,985,950$ |
| 2038 | $1,270,000$ | 715,450 | $1,985,450$ |
| 2039 | $1,330,000$ | 651,950 | $1,981,950$ |
| 2040 | $1,400,000$ | 585,450 | $1,985,450$ |
| 2041 | $1,470,000$ | 515,450 | $1,985,450$ |
| 2042 | $1,540,000$ | 441,950 | $1,981,950$ |
| 2043 | $1,620,000$ | 364,950 | $1,984,950$ |
| 2044 | $1,685,000$ | 300,150 | $1,985,150$ |
| 2045 | $1,750,000$ | 232,750 | $1,982,750$ |
| 2046 | $1,820,000$ | 162,750 | $1,982,750$ |
| 2047 | $1,890,000$ | 94,500 | $1,984,500$ |
| Total: | $\$ 28,975,000$ | $\$ 20,367,157$ | $\$ 49,342,157$ |

## Debt Service and Amortization



## Detailed Calculation of Debt Service



| $\begin{aligned} & 8 / 18 / 2022 \\ & 12 / 1 / 2022 \end{aligned}$ |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  | 6/1/2024 |
| $12 / 1 / 2024$$6 / 1 / 2025$ |  |
|  |  |
| 6/1/2026 |  |
|  | /228 |
| 6/1/2027 |  |
|  |  |
|  |  |
|  |  |
| $12 / 1 / 202$ |  |
|  |  |
|  |  |
|  |  |
|  | 12/1/203 |
| $6 / 1 / 203$$12 / 1 / 203$ |  |
|  |  |
| 1/2033 |  |
|  |  |
|  |  |
|  |  |
|  |  |
| /203 |  |
|  |  |
|  |  |
|  |  |
| 6/1/2038 |  |
|  |  |
| $12 / 1 / 2038$$6 / 1 / 2039$$12 / 29$ |  |
|  | $1 / 203$ |
|  | 12/1/2039 |
| $6 / 1 / 2040$$12 / 1 / 2040$ |  |
| 退1/2044 |  |
|  |  |
|  | 2/1/204 |
|  | /20 |
| 仿/2043 |  |
|  | 1/204 |
| $12 / 1 / 20$$0 / 1 / 204$ |  |
|  |  |
| (1/2044 |  |
|  |  |
| 1/2046 |  |
|  |  |
| 6/1/2046$12 / 1 / 2046$$6 / 1 / 2047$ |  |
|  |  |

- Holders of individual maturities receive current interest until their bond matures or are called.
- The sum of all principal and interest payments due result in the total payment column for every payment date.
- Convention is to assume 30-day month, 360-day year.


## Calculation of True Interest Cost (T.I.C.)

The T.I.C. is the present value rate applied to the future stream of payments that results in the purchase price.

| Step \#1: Calculate Purchase Price |  |
| :--- | ---: |
|  |  |
| Bond Par Amount: | $\$ 28,975,000.00$ |
| + Bond Premium: | $3,619,643.90$ |
| - Underwriter's Discount: | $123,991.85$ |
| Purchase Price: | $\$ 32,470,652.05$ |


| Step \#2: Calculate Present Value |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Payment Date | Payment | Present Value | Payment Date | Payment | Present Value |
| 8/18/2022 | 0.00 | 0.00 | 12/1/2034 | 444,100.00 | 287,582.12 |
| 12/1/2022 | 393,531.53 | 389,569.34 | 6/1/2035 | 1,539,100.00 | 979,191.81 |
| 6/1/2023 | 1,327,725.00 | 1,291,317.97 | 12/1/2035 | 416,725.00 | 260,477.56 |
| 12/1/2023 | 671,725.00 | 641,854.22 | 6/1/2036 | 1,566,725.00 | 962,129.13 |
| 6/1/2024 | 1,311,725.00 | 1,231,423.72 | 12/1/2036 | 387,975.00 | 234,079.92 |
| 12/1/2024 | 655,725.00 | 604,792.35 | 6/1/2037 | 1,597,975.00 | 947,218.62 |
| 6/1/2025 | 1,330,725.00 | 1,205,848.34 | 12/1/2037 | 357,725.00 | 208,328.83 |
| 12/1/2025 | 638,850.00 | 568,752.22 | 6/1/2038 | 1,627,725.00 | 931,324.31 |
| 6/1/2026 | 1,343,850.00 | 1,175,424.74 | 12/1/2038 | 325,975.00 | 183,241.58 |
| 12/1/2026 | 621,225.00 | 533,842.06 | 6/1/2039 | 1,655,975.00 | 914,562.39 |
| 6/1/2027 | 1,361,225.00 | 1,149,247.60 | 12/1/2039 | 292,725.00 | 158,832.44 |
| 12/1/2027 | 602,725.00 | 499,945.57 | 6/1/2040 | 1,692,725.00 | 902,372.03 |
| 6/1/2028 | 1,382,725.00 | 1,126,831.97 | 12/1/2040 | 257,725.00 | 134,981.92 |
| 12/1/2028 | 583,225.00 | 466,959.59 | 6/1/2041 | 1,727,725.00 | 889,024.01 |
| 6/1/2029 | 1,403,225.00 | 1,103,799.80 | 12/1/2041 | 220,975.00 | 111,712.52 |
| 12/1/2029 | 562,725.00 | 434,889.62 | 6/1/2042 | 1,760,975.00 | 874,644.80 |
| 6/1/2030 | 1,422,725.00 | 1,080,248.37 | 12/1/2042 | 182,475.00 | 89,043.40 |
| 12/1/2030 | 541,225.00 | 403,738.66 | 6/1/2043 | 1,802,475.00 | 864,146.62 |
| 6/1/2031 | 1,441,225.00 | 1,056,267.94 | 12/1/2043 | 150,075.00 | 70,688.11 |
| 12/1/2031 | 518,725.00 | 373,507.49 | 6/1/2044 | 1,835,075.00 | 849,203.27 |
| 6/1/2032 | 1,463,725.00 | 1,035,479.39 | 12/1/2044 | 116,375.00 | 52,909.95 |
| 12/1/2032 | 495,100.00 | 344,107.96 | 6/1/2045 | 1,866,375.00 | 833,674.28 |
| 6/1/2033 | 1,490,100.00 | 1,017,506.14 | 12/1/2045 | 81,375.00 | 35,711.52 |
| 12/1/2033 | 470,225.00 | 315,462.08 | 6/1/2046 | 1,901,375.00 | 819,794.37 |
| 6/1/2034 | 1,515,225.00 | 998,707.72 | 12/1/2046 | 47,250.00 | 20,015.15 |
|  |  |  | 6/1/2047 | 1,937,250.00 | 806,236.54 |
|  |  |  |  | \$49,342,156.53 | \$32,470,652.05 |

Step \#3: Calculate T.I.C.
Total PV: \$32,470,652.05 True Interest Cost: 3.568308\%

## Calculation of All-In T.I.C.

The All-In T.I.C. is the present value rate applied to the future stream of payments that results in the purchase price less cost of issuance.

| Step \#1: Calculate Target Value |  |
| :--- | ---: |
|  |  |
| Bond Par Amount: | $\$ 28,975,000.00$ |
| + Bond Premium: | $3,619,643.90$ |
| - Underwriter's Discount: | $-123,991.85$ |
| - Cost of Issuance: | $\mathbf{- 2 8 5 , 0 0 0 . 0 0}$ |
| - Bond Insurance Premium | $\mathbf{- 1 3 8 , 1 5 8 . 0 4}$ |
| - Surety Bond Premium: | $\mathbf{- 4 3 , 7 0 1 . 9 0}$ |
| Target Value | $\$ 32,003,792.11$ |


| Step \#2: Calculate Present Value |  |  |  |  |  | Step \#3: Calculate All-In T.I.C. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Payment Date | Payment | Present Value | Payment Date | Payment | Present Value |  |  |
| 8/18/2022 | 0.00 | 0.00 | 12/1/2034 | 444,100.00 | 282,922.58 | Total PV: | \$32,003,792.11 |
| 12/1/2022 | 393,531.53 | 389,421.17 | 6/1/2035 | 1,539,100.00 | 962,686.32 | All-In T.I.C.: | 3.703682\% |
| 6/1/2023 | 1,327,725.00 | 1,289,969.01 | 12/1/2035 | 416,725.00 | 255,916.70 |  |  |
| 12/1/2023 | 671,725.00 | 640,757.61 | 6/1/2036 | 1,566,725.00 | 944,654.44 |  |  |
| 6/1/2024 | 1,311,725.00 | 1,228,502.87 | 12/1/2036 | 387,975.00 | 229,675.70 |  |  |
| 12/1/2024 | 655,725.00 | 602,956.86 | 6/1/2037 | 1,597,975.00 | 928,779.05 |  |  |
| 6/1/2025 | 1,330,725.00 | 1,201,389.77 | 12/1/2037 | 357,725.00 | 204,137.52 |  |  |
| 12/1/2025 | 638,850.00 | 566,272.71 | 6/1/2038 | 1,627,725.00 | 911,980.81 |  |  |
| 6/1/2026 | 1,343,850.00 | 1,169,522.67 | 12/1/2038 | 325,975.00 | 179,316.43 |  |  |
| 12/1/2026 | 621,225.00 | 530,808.53 | 6/1/2039 | 1,655,975.00 | 894,377.11 |  |  |
| 6/1/2027 | 1,361,225.00 | 1,141,957.66 | 12/1/2039 | 292,725.00 | 155,223.63 |  |  |
| 12/1/2027 | 602,725.00 | 496,444.16 | 6/1/2040 | 1,692,725.00 | 881,283.30 |  |  |
| 6/1/2028 | 1,382,725.00 | 1,118,196.51 | 12/1/2040 | 257,725.00 | 131,739.74 |  |  |
| 12/1/2028 | 583,225.00 | 463,073.11 | 6/1/2041 | 1,727,725.00 | 867,093.61 |  |  |
| 6/1/2029 | 1,403,225.00 | 1,093,885.50 | 12/1/2041 | 220,975.00 | 108,884.39 |  |  |
| 12/1/2029 | 562,725.00 | 430,697.03 | 6/1/2042 | 1,760,975.00 | 851,935.65 |  |  |
| 6/1/2030 | 1,422,725.00 | 1,069,123.19 | 12/1/2042 | 182,475.00 | 86,673.85 |  |  |
| 12/1/2030 | 541,225.00 | 399,315.12 | 6/1/2043 | 1,802,475.00 | 840,591.68 |  |  |
| 6/1/2031 | 1,441,225.00 | 1,044,000.75 | 12/1/2043 | 150,075.00 | 68,715.59 |  |  |
| 12/1/2031 | 518,725.00 | 368,924.35 | 6/1/2044 | 1,835,075.00 | 824,958.10 |  |  |
| 6/1/2032 | 1,463,725.00 | 1,022,093.78 | 12/1/2044 | 116,375.00 | 51,365.19 |  |  |
| 12/1/2032 | 495,100.00 | 339,433.97 | 6/1/2045 | 1,866,375.00 | 808,796.41 |  |  |
| 6/1/2033 | 1,490,100.00 | 1,003,018.41 | 12/1/2045 | 81,375.00 | 34,622.82 |  |  |
| 12/1/2033 | 470,225.00 | 310,763.73 | 6/1/2046 | 1,901,375.00 | 794,273.95 |  |  |
| 6/1/2034 | 1,515,225.00 | 983,179.59 | 12/1/2046 | 47,250.00 | 19,379.18 |  |  |
|  |  |  | 6/1/2047 | 1,937,250.00 | 780,100.30 |  |  |
|  |  |  |  | \$49,342,156.53 | \$32,003,792.11 |  |  |

## Calculation of N.I.C.

The N.I.C. is the blended cost of borrowing that factors in the average interest rate weighted for the time to maturity and does NOT factor in the time value of money.

## Step \#1: Calculate Numerator

| Total Interest Payments: | $\$ 20,367,156.53$ |
| :--- | ---: |
| + Underwriter's Discount: | $123,991.85$ |
| - Premium: | $3,619,643.90$ |
| Total: | $\$ 16,871,504.48$ |


| Maturity | Principal | Yrs. From <br> Dated Date | Bond <br> Years |
| :---: | ---: | ---: | ---: |
| $6 / 1 / 2023$ | $\$ 640,000$ | 0.79 | 503,111 |
| $6 / 1 / 2024$ | 640,000 | 1.79 | $1,143,111$ |
| $6 / 1 / 2025$ | 675,000 | 2.79 | $1,880,625$ |
| $6 / 1 / 2026$ | 705,000 | 3.79 | $2,669,208$ |
| $6 / 1 / 2027$ | 740,000 | 4.79 | $3,541,722$ |
| $6 / 1 / 2028$ | 780,000 | 5.79 | $4,513,167$ |
| $6 / 1 / 2029$ | 820,000 | 6.79 | $5,564,611$ |
| $6 / 1 / 2030$ | 860,000 | 7.79 | $6,696,056$ |
| $6 / 1 / 2031$ | 900,000 | 8.79 | $7,907,500$ |
| $6 / 1 / 2032$ | 945,000 | 9.79 | $9,247,875$ |
| $6 / 1 / 2033$ | 995,000 | 10.79 | $10,732,181$ |
| $6 / 1 / 2034$ | $1,045,000$ | 11.79 | $12,316,486$ |
| $6 / 1 / 2035$ | $1,095,000$ | 12.79 | $14,000,792$ |
| $6 / 1 / 2036$ | $1,150,000$ | 13.79 | $15,854,028$ |
| $6 / 1 / 2037$ | $1,210,000$ | 14.79 | $17,891,194$ |
| $6 / 1 / 2038$ | $1,270,000$ | 15.79 | $20,048,361$ |
| $6 / 1 / 2039$ | $1,330,000$ | 16.79 | $22,325,528$ |
| $6 / 1 / 2040$ | $1,400,000$ | 17.79 | $24,900,556$ |
| $6 / 1 / 2041$ | $1,470,000$ | 18.79 | $27,615,583$ |
| $6 / 1 / 2042$ | $1,540,000$ | 19.79 | $30,470,611$ |
| $6 / 1 / 2043$ | $1,620,000$ | 20.79 | $33,673,500$ |
| $6 / 1 / 2044$ | $1,685,000$ | 21.79 | $36,709,597$ |
| $6 / 1 / 2045$ | $1,750,000$ | 22.79 | $39,875,694$ |
| $6 / 1 / 2046$ | $1,820,000$ | 23.79 | $43,290,722$ |
| $6 / 1 / 2047$ | $1,890,000$ | 24.79 | $46,845,750$ |
|  |  |  |  |
| Total: | $\$ 28,975,000$ |  | $440,217,569$ |
|  |  |  |  |

Step \#3: Calculate N.I.C.

| Numerator: | $\$ 16,871,504.48$ |
| :--- | ---: |
| Denominator (Bond Years): | $440,217,569.44$ |
| N.I.C.: | $\mathbf{3 . 8 3 2 5 3 8} \%$ |

## Pricing Via Competitive Sale

This transaction was priced via competitive sale, with T.I.C. as the basis for award.

| Bid Award* | Bidder Name | TIC |
| :---: | :--- | :---: |
| $\square$ | KeyBanc Capital Markets | 3.572405 |
| $\square$ | Fidelity Capital Markets | 3.594273 |
| $\square$ | Mesirow Financial, Inc. | 3.645351 |
| $\square$ | Robert W. Baird \& Co., Inc. | 3.656948 |
| $\square$ | Wells Fargo Bank. National Association | 3.669999 |
| $\square$ | J.P. Morgan Securities LLC | 3.759251 |
| $\square$ | BofA Securities | 3.974176 |



# Section 3: <br> The Impact of Recent Market Movements 

## Shift in Bond Market in 2022



## Rates from a Historical Perspective



## Proactive FOMC to Target Inflation

- The FOMC has increased the target for the federal funds rate in 2022.
- There are two more FOMC meetings in 2022
- November 1-2
- December 13-14



## Municipal Bond Fund Flows Impact Market Demand



## Implications of Rising Rate Environment

Borrower's Perspective:

- Higher cost of funds for new money projects.
- Lower "debt capacity".
- Less opportunity to generate savings from refundings.

Investor's Perspective:

- Declining value in bond portfolios.
- Higher yielding new investments in bond portfolios.


## Section 4:

Frequently Asked Questions

## FAQ \#1

Question:

- Why are certain bonds priced a premium, par, or discount?


## Answer:

- Largely depends on investor preference and market conditions:
- Institutional investors, who buy and actively trade bonds, are typically purchasers of premium tax-exempt bonds.
- Individual investors, who typically buy and hold to maturity, are typically purchasers of par or discount tax-exempt bonds.


## FAQ \#2

## Question:

- Why are new issue tax-exempt bonds typically priced with a premium structure?


## Answer:

- The premium pricing structure is so pervasive, viewed as a market convention.
- Viewed as "defensive" couponing structure; dollar price is less sensitive to market movement. (example on next page)
- Premium bond pricing helps prevent the triggering of a tax event due to the de minimis rule.
- A discount bond may trigger a taxable event (either as capital gains or ordinary income) and investors who purchase tax-exempt bonds generally want to avoid such situations.


## FAQ \#2 - Example of Defensive Couponing

|  | Example A: Premium Bond |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Maturity | Par | Coupon | Yield | Dollar Price |
| $6 / 1 / 2042$ | $1,540,000$ | $5.00 \%$ | $3.21 \%$ | 114.926 |
|  |  | $3.71 \%$ | 110.500 |  |
| Yield Increase of 50 bps: |  | $\mathbf{- 4 . 4 2 6}$ |  |  |
|  |  |  | $\mathbf{- 3 . 9 \%}$ |  |


| Example B: Discount Bond |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Maturity | Par | Coupon | Yield | Dollar Price |
| 6/1/2042 | 1,540,000 | 3.00\% | 3.21\% | 96.938 |
| Yield Increas | of 50 bps : |  | 3.71\% | 90.106 |
| Reduction in | Dollar Price: |  |  | -6.832 |
| Reduction in | Dollar Price |  |  | -7.0\% |

## FAQ \#3

Question:

- Should I dictate premium couponing structure on my new money transactions in order to preserve the refundability in the future?

Answer:

- Depends on multiple factors:
- Future interest rate environment, which no one can predict.
- Remaining term and par amount of financing at call date.
- Pricing benefit between premium vs. par/discount bonds.
- Size of transaction or frequency of issuance; are you likely to execute a refunding?


## FAQ \#3 - Sample Analysis

- Analysis can help to dimension the trade-offs between couponing structures.

Example Analysis Comparing "Low Coupon"
Structure vs. 4.00\% Coupon Structure

| Low Coupon Vs. 4\% Scale Scenarios |  |  |
| :---: | ---: | :---: |
| $\mathbf{4 / 1 / 2 0 2 1 - 4 / 1 / 2 0 3 0}$ Debt Service Comparison |  |  |
| Low Coupon Scenario DS: | $17,225,634.03$ |  |
| 4\% Scale Scenario DS: | $17,793,088.89$ |  |
| Difference: | $-567,454.86$ |  |
| Low Coupon Scenario Saves: | $\mathbf{5 6 7 , 4 5 4 . 8 6}$ |  |


|  | Low Coupon Vs. 4\% Scale Scenarios <br> Assuming 10-Year Par Call is Not Used |  |  |
| ---: | ---: | ---: | ---: |
| PV of Low Coupon Scenario's DS: | $38,018,678.48$ | Gross DS of Low Coupon Scenario: | $59,208,409.03$ |
| (Less) PV of 4\% Scale Scenario's DS: | $38,613,433.41$ | (Less) Gross DS of 4\% Scale Scenario: | $59,847,288.89$ |
| Difference in PV: | $-594,754.93$ | Difference in Gross DS: | $-638,879.86$ |
| Low Coupon Scenario Saves: | $\mathbf{5 9 4 , 7 5 4 . 9 3}$ | Low Coupon Scenario Saves: | $\mathbf{6 3 8 , 8 7 9 . 8 6}$ |


|  | Low Coupon Vs. 4\% Scale Scenarios <br> Assuming 10-Year Par Call is Used |  |  |
| ---: | ---: | ---: | ---: |
| PV of Low Coupon Scenario's DS: | $35,549,506.03$ | Gross DS of Low Coupon Scenario: | $55,111,309.59$ |
| (Less) PV of 4\% Scale Scenario's DS: | $35,187,187.17$ | (Less) Gross DS of 4\% Scale Scenario: | 54,014,363.33 |
| Difference in PV: | $362,318.86$ | Difference in Gross DS: | $\mathbf{1 , 0 9 6 , 9 4 6 . 2 6}$ |
| $\mathbf{4 \%}$ Scale Scenario Saves: | $\mathbf{3 6 2 , 3 1 8 . 8 6}$ | $\mathbf{4 \%}$ Scale Scenario Saves: | $\mathbf{1 , 0 9 6 , 9 4 6 . 2 6}$ |

## Section 5: Audience Q\&A

Bobby Cheung, Director<br>KNN Public Finance, LLC<br>2054 University Avenue, Suite 300<br>Berkeley, CA<br>510-208-8214 (о)<br>510-381-3548 (m)

## Appendix: Detailed Bond Price Calculation

## Appendix: Detailed Bond Price

- The dollar price of a bond is the present value of the future cashflows at the market yield
- Coupon, yield, and time are the only factors in price
- There are several methods to derive bond price, including:

$$
\begin{aligned}
& \begin{array}{l}
\text { Bond } \\
\text { Dollar } \\
\text { Price }
\end{array} \quad=\frac{100}{\left(1+\frac{\text { Yield }}{2}\right)} \text { \# of semi-annual }
\end{aligned}
$$




Present value of the
principal at maturity


Present value of the
interest payments over time

## Bond Price Formula Example

- What is the price of a municipal bond assuming:
- 10 Year Maturity
- $5.00 \%$ Coupon
- 4.00\% Yield



## Bond Price Formula Example

- What is the price of a municipal bond assuming:
- 10 Year Maturity (20 semi-annual periods)
- $5.00 \%$ Coupon
- $4.00 \%$ Yield
$\begin{aligned} & \text { Bond } \\ & \text { Price } \\ & \left(1+\frac{\text { Yield }}{2}\right)^{20}\end{aligned}+\frac{100}{\left(\frac{\text { Yield }}{2}\right)}$


## Bond Price Formula Example

- What is the price of a municipal bond assuming:
- 10 Year Maturity (20 semi-annual periods)
- $5.00 \%$ Coupon
- $4.00 \%$ Yield

$$
\begin{aligned}
& \text { Bond } \\
& \text { Price } \\
& \left(1+\frac{\text { Yield }}{2}\right)^{20}
\end{aligned}
$$



## Bond Price Formula Example

- What is the price of a municipal bond assuming:
- 10 Year Maturity ( 20 semi-annual periods)
- $5.00 \%$ Coupon




## MSRB Rule G-42: Disclosure of Conflicts of Interest \& Legal or Disciplinary Events

Pursuant to Municipal Securities Rulemaking Board ("MSRB") Rule G-42, on Duties of Non-Solicitor Municipal Advisors, Municipal Advisors are required to make certain written disclosures to clients which include, amongst other things, Conflicts of Interest and any Legal or Disciplinary events of KNN Public Finance, LLC ("KNN Public Finance") and its associated persons.
Conflicts of Interest
Other Municipal Advisor Relationships. KNN serves a wide variety of other clients that may from time to time have interests that could have a direct or indirect impact on the interests of another KNN client. For example, KNN serves as municipal advisor to other municipal advisory clients and, in such cases, owes a regulatory duty to such other clients just as it will to your entity, if hired. These other clients may, from time to time and depending on the specific circumstances, have competing interests. In acting in the interests of its various clients, KNN could potentially face a conflict of interest arising from these competing client interests. KNN fulfills its regulatory duty and mitigates such conflicts through dealing honestly and with the utmost good faith with its clients.
Compensation. KNN Public Finance represents that in connection with the issuance of municipal securities, KNN Public Finance may receive compensation from an Issuer or Obligated Person for services rendered, which compensation is contingent upon the successful closing of a transaction and/or is based on the size of a transaction. Consistent with the requirements of MSRB Rule G-42, KNN Public Finance hereby discloses that such contingent and/or transactional compensation may present a potential conflict of interest regarding KNN Public Finance's ability to provide unbiased advice to enter into such transaction. This conflict of interest will not impair KNN Public Finance's ability to render unbiased and competent advice or to fulfill its fiduciary duty to the Issuer.
If KNN Public Finance becomes aware of any additional potential or actual conflict of interest after this disclosure, KNN Public Finance will disclose the detailed information in writing to the Issuer in a timely manner.
Legal or Disciplinary Events
KNN Public Finance, LLC, has never been subject to any legal, disciplinary or regulatory actions nor was it ever subject to any legal, disciplinary or regulatory actions previously, when it was a division of Zions First National Bank or Zions Public Finance, Inc.
A regulatory action disclosure has been made on Form MA-I for one of KNN Public Finance municipal advisory personnel relating to a 1998 U.S. Securities and Exchange Commission ("SEC") order that was filed while the municipal advisor was employed with a prior firm, (not KNN Public Finance). The details of which are available in ltem 9; C(1), C(2), C(4), C(5) and the corresponding regulatory action DRP section on Form MA and Item 6C; (1), (2), (4), (5) and the corresponding regulatory action DRP section on Form MA-I. Issuers may electronically access KNN Public Finance's most recent Form MA and each most recent Form MA-I filed with the Commission at the following website: www.sec.gov/edgar/searchedgar/companysearch.html.
The SEC permits certain items of information required on Form MA and Form MA-I to be provided by reference to such required information already filed on a regulatory system (e.g., FINRA CRD). The above noted regulatory action has been referenced on both Form MA and MA-I due to the information already filed on FINRA's CRD system and is publicly accessible through BrokerCheck at noted regulatory action has been referenced on both Form MA and MA-1 due to the information already filed on FINRA
http://brokercheck.finra.org. For purposes of accessing such BrokerCheck information, the Municipal Advisor's CRD number is 4457537.

There has been no change to any legal or disciplinary event that has been disclosed on KNN Public Finance's original SEC registration Form MA filed on February 8, 2016 or Form MA-l's filed on January 22, 2016.

