Bond Concepts

Craig Hill, Managing Principal, NHA Advisors, LLC

Table of Contents

- Introduction to Bonds
- Process of Issuing Bonds
- Basic Bond Math

Purpose of Municipal Bonds

- Spread out the cost of constructing the asset over the life of the asset
- Ensures the benefits are paid for by those who enjoy them

Ways to Fund Projects

Grants or Loans

Common Objectives

Project
 Financing

- Capital improvement projects
- Infrastructure development

Refinancing

- Lower Interest rates
- Consolidate debt and facilitate budget predictability

Cash Flow

- Tax Revenue Anticipation Notes (TRAN)
- Bond

Anticipation Notes (BAN)

What Is A Bond?

- Issuer: Entity that issues the bonds
- Borrows the money
- Bondholder: Owner of the bonds
- Receives the bonds (lends money)
- Financing mechanism where the borrower receives a payment upfront from a lender in exchange for future repayments made to the lender
- Simply put: "a loan"
- Can be thought of as an IOU between lender and borrower

Elements Of A Bond

Maturity Schedule

Sources and Uses

Sources Of Funds

Par Amount of Bonds
\$5,000,000

Total Sources
\$5,000,000

Uses Of Funds
Costs of Issuance \$200,000
Project Fund
\$4,800,000

Total Uses
\$5,000,000

Tax-Exempt Nature of Municipal Bonds

- Majority of Municipal Bonds are issued for public use projects and so are Tax-Exempt
- IRS requires that bonds issued for private purposes must be issued on a taxable basis
- Issuers are not allowed to earn more on the bond proceeds than the calculated yield ("arbitrage")

Bond Structures

Voter Approval

School District Bonds

State Bonds

Thank YOU Proposition 13...

Voter Approval Exceptions

Obligations Imposed by Law

Developing the Financing Plan

Identify Project Needs

Quantify Available Cash

Repayment Sources

Develop Financial Model

Debt Policy Considerations

Assembling the Financing Team

 (Public Offering)Issuer

Underwriter

Municipal Advisor

Trustee/Paying Agent

Bond/Disclosure Counsel

Rating Agency

A+

Debt Structures

$\$ 400,000$
Level Debt Service

Debt Structures

Debt Structures

Ascending Debt Service

Debt Structures

Capital Appreciation Bonds (CABs)

Current Interest Bond

Maturity
Full Value

Capital Appreciation Bond

Methods of a Bond Sale

Competitive

Negotiated

- Structured without UW
- UW services bid completely
- Traditional bonds or high rating
- UW selected by issuer before sale
- Structured with UW
- Unique

Transactions

MATURITY SCHEDULE

Official Statement

$\$ 30,000,000$
CITY OF CAMPBELL
CITY OF CAMPBELL
ELECTION OF 2018 GENERAL OBLIGATION BONDS,
SERIES 2022
(Base CUSIPt: 134105)

Maturity Date (September 1)	Principal Amount	Interest Rate	Yield	Price	CUSIP ${ }^{+}$No.
2022	\$2,000,000	5.000\%	1.600\%	100.644	JF3
2023	1,710,000	5.000	1.900	103.632	JG1
2024	1,010,000	5.000	2.150	106.066	JH9
2025	495,000	5.000	2.310	108.227	JJ5
2026	520,000	5.000	2.380	110.389	JK2
2027	545,000	5.000	2.470	112.253	JLO
2028	575,000	5.000	2.580	113.762	JM8
2029	605,000	5.000	2.710	114.868	JN6
2030	635,000	5.000	2.780	116.159	JP1
2031	665,000	5.000	2.860	$115.525^{\text {C }}$	JQ9
2032	700,000	5.000	2.910	$115.131^{\text {c }}$	JR7
2033	730,000	5.000	3.020	$114.269^{\text {c }}$	JS5
2034	770,000	5.000	3.090	$113.725^{\text {c }}$	JT3
2035	805,000	5.000	3.180	$113.030^{\text {c }}$	JU0
2036	850,000	5.000	3.250	$112.492{ }^{\text {c }}$	JV8
2037	890,000	5.000	3.300	$112.110^{\text {c }}$	JW6
2038	935,000	5.000	3.350	$111.730^{\text {c }}$	JX4
2039	980,000	5.000	3.400	$111.351^{\text {c }}$	JY2
2040	1,030,000	5.000	3.460	$110.898{ }^{\text {c }}$	JZ9
2041	1,080,000	5.000	3.500	$110.597{ }^{\text {c }}$	KA2
2042	1,135,000	5.000	3.520	$110.448^{\text {c }}$	KB0

\$6,585,000-5.000\% Term Bonds maturing September 1, 2047; Yield: 3.550\%; Price: $110.223^{\text {c }}$; CUSIPT: KC8
\$4,750,000-4.000\% Term Bonds maturing September 1, 2050; Yield: 4.050\%; Price: 99.159; CUSIP ${ }^{\dagger}$: KD6

[^0]
Negotiated Underwriting Flow of Funds

Bondholders

Municipal Market Data (MMD) Yield Curve

- Thomson Reuters Index
- Benchmark for "AAA" rated General Obligation Bonds

Municipal Market Data (MMD) Yield Curve

- Thomson Reuters Index
- Benchmark for "AAA" rated General Obligation Bonds

$$
\square
$$

F

What's the Credit Rating?

3

CALIFORNIA REPUBLIC

Credit Enhancements

Bond Pricing \& Yield

- Prices and yields are inversely correlated

Par

Price

Coupon
Yields

Bond Pricing \& Yield

- Prices and yields are inversely correlated

Premium

Bond Pricing \& Yield

- Prices and yields are inversely correlated

Discount

Yields

Price
Coupon

Pricing the Bonds

	Maturity	Market		
	Date	Coupon	Yield	Price
	12/1/2023	5.00\%	4.50\%	102.195
Par	12/1/2024	5.00\%	5.00\%	100.000
	12/1/2025	5.00\%	5.50\%	97.865

Pricing the Bonds

Pricing the Bonds

Investor Preferences

Continuing Disclosure

- Issuers have the obligation to repay the bonds AND provide periodic reporting to investors
- Annual reporting and significant events reporting
- Will be discussed in more detail on Day 3

Basic Bond Math

Bond Price

- Bond Price: Price at which the bond is sold to investors
- Equation:

Bond Price $=\frac{C}{(1+i)}+\frac{C}{(1+i)^{2}}+\ldots+\frac{C}{(1+i)^{n}}+\frac{M}{(1+i)^{n}}$

- $\mathbf{C}=$ Coupon payment
- $\mathbf{i}=$ Interest rate (required yield)
- $\mathbf{M}=$ Value at maturity
- $\mathbf{n}=$ Number of payments
- Excel 'PRICE’ Function:

Inputs
Values
Delivery Date (settlement) 9/1/2022
Maturity Date 9/1/2032
Coupon (rate) 5.00%
Yield 4.50\%
Maturity Value (redemption) \$100
Coupon Payments/Year 2
Day Count Basis 0
PRICE function
\$103.99

- =PRICE(delivery date, maturity date, coupon, yield, value at maturity, frequency of coupons, day count basis)

Yield to Maturity

- Yield to Maturity (YTM): Total return anticipated on a bond if held until maturity
- Equation:

Bond Price $=\frac{\text { Cashflow } 1}{(1+\text { yield })^{1}}+\frac{\text { Cashflow } 2}{(1+\text { yield })^{2}}+\ldots+\frac{\text { Last Cashflow }}{(1+\text { yield })^{n}}$

- Back-solves bond price equation to determine yield, given bond price and coupon:
- Excel 'YIELD' Function:
$=$ YIELD(delivery date, maturity date, coupon, price, value at maturity, coupon payments per year, day count basis)

Inputs
 Values

Delivery Date (settlement) 9/1/2022
Maturity Date
Coupon (rate) 9/1/2032 5.00\%

Purchase Price $\$ 110$
Maturity Value (redemption) \$100
Coupon Payments/Year 2
Day Count Basis 0
YIELD function 3.79\%

True Interest Cost

- True Interest Cost (TIC): Rate necessary to discount the amounts payable on the bond to the purchase price received
- Effective borrowing rate on Bond inclusive of P\&I and all costs associated with Bond issuance
- Proxied by internal rate of return (IRR)
- Excel ‘IRR’ function:
=IRR(values, guess)
- Values: Series of payments (first cash inflow must have negative value)
- Guess: Gives Excel a place to start solving

Principal and Interest Payment Date

Issue Bonds	$\$(10,000,000)$
$12 / 1 / 2023$	$\$ 1,500,000$
$12 / 1 / 2024$	$\$ 1,500,000$
$12 / 1 / 2025$	$\$ 1,500,000$
$12 / 1 / 2026$	$\$ 1,500,000$
$12 / 1 / 2027$	$\$ 1,500,000$
$12 / 1 / 2028$	$\$ 1,500,000$
$12 / 1 / 2029$	$\$ 1,500,000$
$12 / 1 / 2030$	$\$ 1,500,000$
$12 / 1 / 2031$	$\$ 1,500,000$
$12 / 1 / 2032$	$\$ 1,500,000$
IRR Function (T\|C)	$\mathbf{8 . 1 4 \%}$

Annual Debt Service Amount

 $\$(10,000,000)$ \$1,500,000
Debt Service Payments

- If public agency needs to issue Bonds to pay for a police station, knowing the expected cost of the station, how can you approximate the yearly debt service?
- Excel Function
=PMT(Interest rate, Number of Periods, Present Value, Future Value, Payment Due Period)

Inputs	Values
Coupon (rate)	5.00%
Years to Maturity (nper)	30
Present Value (PV)	$\$ 30,000,000$
Face Value (FV)	$\$ 0$
Payment Due period	0
PMT Function (Annual DS)	$(\$ 1,951,543)$

- "PMT" value returned is negative to show cash payments going out

Case Study

Campbell - Session 2

Fun Stats

California County Ratings

15 AAA Rated Counties in California

20 AA Rated Counties in California
*The state of California has a AA- rating

Source: S\&P Global Ratings as of September 2022

California City Ratings

62 AAA Rated Municipalities in California

Roughly 130 AA Rated Municipalities in California
*The state of California has a AA- rating

Source: S\&P Global Ratings as of September 2022

Types of Transactions

Types of Transactions

2020

Types of Transactions

Issuer Type-2018

Transactions

■ K-14 Schools

- State of California
- All Others

Volume

- K-14 Schools

■ Cities

- Special Districts
- State of California

Issuer Type - 2019

Issuer Type - 2020

Transactions

Issuer Type - 2021

Transactions

[^0]: C Priced to the first optional redemption date of September 1, 2030.
 \dagger CUSIP© is a registered trademark of the American Bankers Association. CUSIP data herein are provided by CUSIP Global Services ("CGS"), managed on behalfof the American Bankers Association by FactSet Research Systems inc. © 2022 CUSIP Global Services. does not serve in any way as a substritute for the CGS database. CUSIP© numbers are provided for convenience only. Neither of the City nor the Underwiter takes any responsibility for the accuracy of such numbers.

