

PUBLIC FUNDS INVESTMENT: STRATEGY INPRACTICE JANUARY 25-26, 2023 | MONTEBELLO, CALIFORNIA

Session One

Public Fund Investment Bootcamp

Rick Phillips, President and Chief Investment Officer, FHN Financial Main Street Advisors, LLC Kevin P. Webb, CFA, Managing Director, Robert W. Baird \& Co.

Public Fund Investment Bootcamp

Rick Phillips

- City of Las Vegas Investment Officer 1989-1998
- Clark County Chief Investment Officer 1998-2005
- FHN Main Street President \& Chief Investment Officer 2005 - Present
- Manage/Consult on $\mathbf{\$ 5 0 +}$ Billion AUM for states and local agencies
- GIOA Founder

Kevin Webb, CFA

- RW Baird, Managing Director

7 Habits of Highly Effective Investment Programs

1. You Have a Detailed Asset/Liability Matching Model (aka: Cash Flow Model)
2. You Have a Responsible Amount of Interest Rate Risk and Credit Risk
3. You Don't Try to Time the Market
4. You Love Losses and Hate Gains (the unrealized kind)
5. You Benchmark Your Investment Program and Portfolio in Multiple Ways
6. You Provide Quality, Timely, Transparent Reporting

Habit \#1

You Have a Detailed Asset/Liability Matching Model (aka: Cash Flow Model)

GIOA Model Investment Policy Primary Objectives

1. Safety of Principal: Safety of principal is the foremost objective of the [entity's] investment program. Investments by the [designated official] shall be undertaken in a manner that seeks to ensure the preservation of capital in the overall portfolio. To attain this objective, diversification of security types, sectors, issuers, and maturities is necessary in order that potential losses on individual securities do not exceed the income generated from the remainder of the portfolio.
2. Liquidity: The investment portfolio shall be structured to timely meet expected cash outflow needs and associated obligations which might be reasonably anticipated. This objective shall be achieved by matching investment maturities with forecasted cash outflows and maintaining an additional liquidity buffer for unexpected liabilities.
3. Investment Income: The investment portfolio shall be designed to earn a market rate of investment income in relation to prevailing budgetary and economic cycles, while taking into account investment risk constraints and liquidity needs of the portfolio.

Detailed Asset/Liability (Cash Flow) Model

$>$ If You Don't Know Where You've Been, You Won't Know Where You're Going
> Many Municipalities Have Too Much Liquidity (But Your Risk is Asymmetrical)

Cash Flow Model:

- Daily for 12 Months
- Monthly for 5 Years
- Worry About the Big Rocks (80/20 Rule)
- Excel is Awesome!

> You Have a Responsible Amount of Liquidity to Ensure You Don't Need to Sell a Security for Liquidity

Cash Flow Model...Excel is Awesome!

Cash Flows May Not Repeat Exactly...But Usually Rhyme

Month End Portfolio Balance

Knowing the Rhyme Helps Match Assets with Liabilities
Month End Portfolio Balance by Fiscal Year

MAIN STREET ADVISORS

Habit \#2

You Have a Responsible Amount of Interest Rate Risk and Credit Risk

Optimal Operating Fund Duration: Risk Adjusted Return

	Benchmark Treasury Modified Sharp Ratio Analysis$\text { 1/31/1990 to } 12 / 31 / 2019$				
	Maturity	Avg Yield	Avg Duration	Modified Sharp Ratio	$\begin{gathered} \text { \% Return of 30Yr } \\ \text { / \% 30Yr Risk } \\ \hline \end{gathered}$
	3 Mon T-Bill	2.78	0.24		62\% / 3\%
	6 Mon T-Bill	2.91	0.48	0.277	65\% / 6\%
	1 Yr T-Bill	3.04	0.97	0.271	67\% / 12\%
Sweet Spot	2 Yr T-Note	3.35	1.90	0.299	74\% / 24\%
	3 Yr T-Note	3.57	2.85	0.277	79\% / 36\%
	5 Yr T-Note	3.97	4.45	0.267	88\% / 56\%
	10 Yr T-Note	4.52	7.96	0.218	100\% / 100\%

(Avg Yield - Risk Free Yield) / Avg Duration = MSR

$$
(3.35 \% 2 y-2.78 \% 3 m) \quad / \quad 1.902 y=.299
$$

$$
\begin{array}{cc}
3.35 \% ~ 2 \mathrm{yr} / 4.52 \% 10 \mathrm{yr}=74 \% \\
\text { Yield Comparison } & 1.902 \mathrm{Yr} / 7.9610 \mathrm{Yr}=24 \% \\
\text { Duration Comparison } \\
\hline
\end{array}
$$

1 Year Weighted Avg Maturity vs. 2 Year Weighted Avg Maturity

1 Year WAM vs. 2 Year WAM: A Long View of Returns

Year	1Y WAM	2Y WAM	Var
1965	4.06	3.90	(0.16)
1966	4.70	4.30	(0.40)
1967	5.05	4.60	(0.45)
1968	5.28	5.00	(0.29)
1969	6.38	5.73	(0.65)
1970	7.08	6.27	(0.81)
1971	6.31	6.46	0.15
1972	5.29	6.50	1.21
1973	6.24	6.48	0.24
1974	7.57	6.60	(0.97)
1975	7.56	7.01	(0.56)
1976	6.85	7.34	0.49
1977	6.43	7.31	0.88
1978	7.40	7.44	0.04
1979	9.06	7.87	(1.18)
1980	10.77	8.91	(1.86)
1981	13.17	10.94	(2.22)
1982	13.68	12.11	(1.57)
1983	11.61	12.34	0.74
1984	10.91	12.55	1.65
1985	10.46	11.38	0.93
1986	8.07	9.94	1.87
1987	7.15	9.30	2.15
1988	7.64	8.35	0.71
1989	8.34	7.97	(0.37)
1990	8.37	8.25	(0.11)
1991	7.44	8.13	0.69
			5

1Yr WAM Avg Yield= 5.53

Year	1Y WAM	2Y WAM	Var
1992	5.74	7.49	1.75
1993	4.41	6.49	2.08
1994	4.99	6.03	1.03
1995	6.00	5.84	(0.16)
1996	6.08	5.91	(0.16)
1997	5.91	6.26	0.35
1998	5.56	5.93	0.37
1999	5.26	5.71	0.45
2000	5.81	5.77	(0.04)
2001	5.04	5.29	0.25
2002	3.23	4.87	1.64
2003	2.20	4.19	2.00
2004	1.97	3.39	1.42
2005	3.12	3.27	0.16
2006	4.33	3.60	(0.74)
2007	4.64	4.05	(0.59)
2008	3.34	3.95	0.61
2009	1.48	3.37	1.89
2010	0.83	2.56	1.73
2011	0.60	1.80	1.20
2012	0.38	1.27	0.89
2013	0.29	1.02	0.73
2014	0.39	0.96	0.57
2015	0.55	0.98	0.43
2016	0.74	1.12	0.38
2017	1.12	1.37	0.25
2018	1.96	1.72	(0.24)
		1	5

2Yr WAM Avg Yield= 5.87

2Yr WAM vs. 1Yr WAM Yield = 0.34 Per Year

Notes: 2 Yr WAM is the 48 month moving average of the 4 yr treasury, the 1 Yr WAM is the 24 month moving average of the 2 year treasury The 4 yr treasury is the average of the 3yr and 5yr treasury, since the US Treasury does not issue a 4 yr treasury

The Worry of Skyrocketing Interest Rates??

Real World Shorter Duration vs. Longer Duration \#1

Real World Shorter Duration vs. Longer Duration \#2

Real World Shorter Duration vs. Longer Duration \#3

Fiscal Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020*	Avg
CC Pool	5.30	5.92	6.15	4.36	2.74	2.06	2.79	3.74	4.57	4.53	3.45	2.21	1.66	1.06	0.77	0.78	0.89	1.08	1.30	1.61	2.14	2.19	2.79
NV LGIP	5.36	5.68	6.13	3.43	2.18	1.53	2.23	3.85	5.12	4.38	2.19	0.66	0.49	0.38	0.31	0.25	0.27	0.43	0.75	1.36	2.26	2.22	2.34
Variance	.05)	0.24	0.02	0.93	0.56	0.53	0.56	1)	5)	0.15	1.27	1.55	1.17	0.68	0.47	0.53	0.62	0.64	0.55	0.25	(0.12)	0.0	0.45

-PYTD 2020

Different Operating Portfolio Strategies/Structures

Active Management

Before/After: Implementing a Asset/Liability Matching Strategy

Before: . 9 Duration

After: 2.1 Duration
MATURITY DISTRIBUTION

You Have a Responsible Amount of Interest Rate Risk

Before: . 9 Duration

After: 2.1 Duration

CREDIT

Is Credit Worth the Risk?

CP 6M	CD 12M
A1/P1	A1/P1

Is Credit Worth the Risk?

One-Year Default Rates

Descriptive Statistics On One-Year Global Default Rates

	AAA	AA	A	BBB	BB	B	CCC/C
Minimum	0.00	0.00	0.00	0.00	0.00	0.25	0.00
Maximum	0.00	0.38	0.39	1.02	4.22	13.84	49.46
Weighted long-term average	0.00	0.02	0.06	0.17	0.65	3.44	26.63
Median	0.00	0.00	0.00	0.06	0.58	3.40	24.83
Standard deviation	0.00	0.07	0.10	0.26	1.00	3.29	11.47
2008 default rates	0.00	0.38	0.39	0.49	0.81	4.10	27.27
Latest four quarters (2018Q1-2018Q4)	0.00	0.00	0.00	0.00	0.00	0.98	27.18
Difference between last four quarters and weighted average	0.00	(0.02)	(0.06)	(0.17)	(0.65)	(2.46)	0.54
Number of standard deviations	0.00	(0.29)	(0.55)	(0.64)	(0.64)	(0.75)	0.05

Sources: S\&P Global Fixed Income Research and S\&P Global Market Intelligence's CreditPro@.

Cumulative Default Rates

Average Cumulative Default Rates For Corporates By Region (1981-2018)

(\%)	--Time horizon (years)--														
Rating	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
U.S.															
AAA	0.00	0.04	0.17	0.29	0.41	0.54	0.58	0.66	0.75	0.83	0.88	0.92	0.97	1.06	1.16
AA	0.03	0.08	0.17	0.30	0.43	0.58	0.72	0.83	0.92	1.03	1.12	1.20	1.29	1.36	1.45
	0.07	0.19	0.34	0.52	0.69	0.90	1.12	1.33	1.56	1.78	1.99	2.18	2.37	2.53	2.71
BBB	0.20	0.54	0.92	1.41	1.92	2.44	2.90	3.37	3.82	4.26	4.70	5.02	5.31	5.64	5.97
BB	0.75	2.36	4.28	6.17	7.89	9.54	10.93	12.22	13.36	14.39	15.24	16.02	16.74	17.33	17.95
B	3.63	8.45	12.71	16.08	18.70	20.85	22.60	23.98	25.21	26.36	27.32	28.06	28.73	29.35	29.96
CCC/C	28.89	39.73	45.37	48.83	51.42	52.62	54.10	55.02	55.89	56.58	57.25	57.79	58.36	58.89	58.89

Sources: S\&P Global Fixed Income Research and S\&P Global Market Intelligence's CreditPro(®).

FINANCIAL
MAIN STREET ADVISORS
BAIRD

Composite Credit Rating: JPMorgan

Numeric Rating	Composite Rating	Moody's Rating	S\&P Rating	Fitch Rating
1	AAA	Aaaa	AAA	AAA
2	AA1	Aa1	AA+	AA+
3	AA2	Aa2	AA	AA
4	AA3	Aa3	AA-	AA-
5	A1	A1	A+	A+
6	A2	A2	A	A
7	A3	A3	A-	A-
8	BBB1	Baa1	BBB+	BBB+
9	BBB2	Baa2	BBB	BBB
10	BBB3	Baa3	BBB-	BBB-

JPMorgan		
NRSRO	Rating	Number
Moody's	A2	6
S\&P	A-	7
Fitch	AA-	4
Average		5.67
Rounded		6
Composite	A2	

Credit Risk Tools

Habit \#3

You Don't Try to Time the Market

"The only function of economic (and interest rate) forecasting is to make astrology look respectable." John Kenneth Galbraith, Economist

"The Federal Reserve is currently not forecasting a recession."
Ben Bernanke (former Fed Chair), January 10, 2008

"Our ability to forecast is limited".
Alan Greenspan (former Fed Chair) November 2019

The "Bond King's" Predictions

BCNBC

($8=$ Jeffrey Gundlach *
 @TruthGundlach

Long maturity US Treasury price action today was consistent with a blowoff momentum top. I suspect buyer's remorse will set in fairly soon.

4:59 PM • 5/29/19
Bond King Gundlach predicts yields are headed much higher before this move ends

Published 12:44 PM ET Thu, 11 Oct 2018

How'd He Do? "Just a Bit Outside"

Fooled By Randomness

"Generate a long series of coin flips, producing heads and tails with 50% odds each and fill up sheets of paper. If the series is long enough you may get eight heads or eight tails in a row, perhaps even ten of each. Yet you know that in spite of these wins the conditional odds of getting a head or a tail is still 50%."

Investment Newsletter Forecasters

There's a large body of evidence demonstrating that stock market forecasts have no value (though they supply plenty of fodder for my writings) because their accuracy is no better than one would randomly expect. For example, David Bailey, Jonathan Borwein, Amir Salehipour and Marcos López de Prado, authors of the March 2017 study, Evaluation and Ranking of Market Forecasters, covering 6,627 market forecasts (specifically for the S\&P 500 Index) made by 68 forecasters who employed technical, fundamental and sentiment indicators, and the period 1998 through 2012, found:

- Across all forecasts, accuracy was 48% - worse than the proverbial flip of a coin.
- Two-thirds of forecasters had accuracy scores below 50%.
- About 40% of forecasters had an accuracy score between 40% and 50%.
- About 3% of forecasters fell in the left tail, with accuracy scores below 20%.
- About 6\% of forecasters fell in the far right tail, with accuracy scores between 70\% and 79\%
- The highest accuracy score was 78% and the lowest was 17%.

The distribution of forecasting accuracy by the gurus examined in the study looks very much like the common bell curve what you would expect from random processes. That makes it very difficult to tell if any skill is present.

Evidence such as this led Warren Buffett to state, "We have long felt that the only value of stock forecasters is to make fortune-tellers look good. Even now, Charlie (Munger) and I continue to believe that short-term market forecasts are poison and should be kept locked up in a safe place, away from children and also from grown-ups who behave in the market like children." Remarking on the value of forecasts, Wall Street Journal columnist Jason Zweig stated "Whenever some analyst seems to know what he's talking about, remember that pigs will fly before he'll ever release a full list of his past forecasts,

S\&P Dow Jones Indices
 Research

A Division of S\&P Global

SPIVA ${ }^{\circledR}$ U.S. Scorecard

FUND CATEGORY	COMPARISON INDEX	1-YEAR	$\begin{array}{r} \text { 3-YEAR } \\ (\%) \\ \hline \end{array}$	5-YEAR (\%)	$\begin{array}{r} \hline \text { 10-YEAR } \\ (\%) \end{array}$	$\begin{array}{r} \text { 15-YEAR } \\ (\%) \end{array}$
Government Long Funds	Bloombera Barclays US Government Long	100.00	76.79	98.31	98.73	98.00
Government Intermediate Funds	Bloomberg Barclays US Government Intermediate	94.12	89.47	85.71	85.29	91.07
Government Short Funds	Bloomberg Barclays US Government (1-3 Year)	91.67	84.00	82.14	69.70	82.86
Investment-Grade Long Funds	Bloomberg Barclays US Government/Credit Long	97.65	72.04	98.91	95.97	97.50
Investment-Grade Intermediate Funds	Bloomberg Barclays US Government/Credit Intermediate	50.50	39.90	55.50	51.65	72.68
Investment-Grade Short Funds	Bloomberg Barclays US Government/Credit (1-3 Year)	83.87	37.50	62.12	41.27	68.00

Security Type Selection for Different Strategies

Securities to Match Cash Outflows:

- Bullets
- ABS Credit Card (soft bullets)
- Floating Rate Notes

Securities to Market Time:

- Bullets
- Paydowns (ABS/MBS/SBA)
- Floating Rate Notes
- Callables
- Step-Ups/Step-Downs
- Bond Mutual Funds
- Floating NAV Funds

Effective Duration: Agency 1-5Yr Bullets vs. 1-5Yr Callables

Average Prices: 1-5Yr Callables vs. 1-5Yr Bullets

Total Return: 2000-2019 1-5Yr Callables vs. 1-5Yr Bullets

Total Return: 2000-2019 1-5Yr Callables vs. 1-3Yr Bullets

But What If Your Timing Was Awesome!

Awesome Timing: 1-3Yr Bullets vs. 1-5Yr Callables Total Return

Source: Bloomberg
D. FHN

FINANCIAL

"Why Would I Buy a 5Yr When the 3Mo is the Same or Higher?"

2006-2008

Source: Bloomberg
FHN
FINANCIAL
MAIN STREET ADVISORS
BAIRD

Current

Habit \#4

You Love Losses and Hate Gains
 (the unrealized kind)

BAIRD

The "Bad News" of "Good News"

Creating a Stable'r Investment Income

Habit \#5

You Follow GAAP
 (Generally Accepted Accounting Principles)

ABOUT US

About the GASB

Established in 1984, the GASB is the independent, private-sector organization based in Norwalk,
Connecticut, that establishes accounting and financial reporting standards for U.S. state and local governments that follow Generally Accepted Accounting Principles (GAAP). >> More

\#5: You Follow GAAP (Generally Accepted Accounting Principles)

You Amortize

Buy/Sell	Buy	Cusip	$313588 \mathrm{HP3}$		
Issue	FNDN $007 / 01 / 19$	Broker			
Audit Trail					
DlrFutBrkr	--	Disc Rate	1.0000	Principal	$\$ 9,900,000.00$
Quantity	$10,000,000$	Yield	1.0216	Acc Int	0.00
Price	99.0000	Spread		Net	$9,900,000.00$
Settle Date	$07 / 01 / 2018$				

If you are not amortizing, when will you recognize the $\mathbf{\$ 1 0 0 , 0 0 0}$ gain (income)?

\square Involves More Work: Monthly Journal Entries
\square Custodians' Amortization Methodology May Not Match Your Investment Accounting System

Not Amortizing Premiums: Overstating Income

End of Year Amortized Value

You Distribute Inv Income on an Accrual Basis...Not a Cash Basis

Month	Apr 18	May 18	Jun 18	Jul 18	Aug 18	Sep 18	Oct 18	Nov 18	Dec 18	Jan 19	Feb 19	Mar 19	Avg
Accrual	1.50%	1.59%	1.66%	1.70%	1.77%	1.84%	1.88%	1.97%	2.04%	2.14%	2.25%	2.30%	1.89%
Cash	1.35%	0.97%	1.28%	2.82%	1.31%	1.61%	1.79%	1.24%	1.17%	2.77%	0.98%	1.82%	1.59%
Variance	$\mathbf{0 . 1 5 \%}$	$\mathbf{0 . 6 2 \%}$	$\mathbf{0 . 3 8 \%}$	$(\mathbf{1 . 1 2 \%)}$	$\mathbf{0 . 4 6 \%}$	$\mathbf{0 . 2 3 \%}$	$\mathbf{0 . 0 9 \%}$	$\mathbf{0 . 7 3 \%}$	$\mathbf{0 . 8 7 \%}$	(0.63%)	$\mathbf{1 . 2 7 \%}$	$\mathbf{0 . 4 8 \%}$	$\mathbf{0 . 2 9 \%}$

FHN
FINANCIAL
MAIN STREET ADVISORS

Habit \#6

You Benchmark Your
 Investment Program and Portfolio in Multiple Ways

GIOA Model Investment Policy Primary Objectives

1. Safety of Principal: Safety of principal is the foremost objective of the [entity's] investment program. Investments by the [designated official] shall be undertaken in a manner that seeks to ensure the preservation of capital in the overall portfolio. To attain this objective, diversification of security types, sectors, issuers, and maturities is necessary in order that potential losses on individual securities do not exceed the income generated from the remainder of the portfolio.
2. Liquidity: The investment portfolio shall be structured to timely meet expected cash outflow needs and associated obligations which might be reasonably anticipated. This objective shall be achieved by matching investment maturities with forecasted cash outflows and maintaining an additional liquidity buffer for unexpected liabilities.
3. Investment Income: The investment portfolio shall be designed to earn a market rate of investment income in relation to prevailing budgetary and economic cycles, while taking into account investment risk constraints and liquidity needs of the portfolio.

Benchmarking Your Investment Plan: Suitable vs. Legal

CFA Institute: Characteristics of Useful Performance Benchmarks

A benchmark is a collection of securities or risk factors and associated weights that represents the persistent and prominent investment characteristics of a manager's investment process. A benchmark should be:

- Unambiguous: The identities and weights of securities constituting the benchmark are clearly defined.
- Investable: It is possible to forgo active management and simply hold the benchmark.
- Measurable: The benchmark's return is readily calculable on a reasonably frequent basis.
- Appropriate: The benchmark is consistent with the manager's investment style and sectors.
- Specified in Advance: The benchmark is specified prior to the start of an evaluation period and known to all interested parties.

> "The failure of a benchmark to possess these properties compromises its utility as an effective investment management tool. The properties listed merely formalize intuitive notions of what constitutes a fair and relevant performance comparison. It is interesting to observe that a number of commonly used benchmarks fail to satisfy these properties." CFA Institute

Important Benchmark Characteristics

To Be Relevant, Benchmarks Should Reflect the General Characteristics of a Portfolio's:

- Sector Allocations
- Duration/Maturity
- Turnover

Three Types of Benchmarking:

- Weighted Yield
- Book Rate of Return
- Total Rate of Return

Performance Benchmarking

+ Accrued/Received Interest
Book Return $=+/$ - Amortization/Accretion or Premiums/Discounts
+/- Realized Gains/Losses
Average Daily Book Balance for the Period
+ Accrued/Recived Interest
Total Return $=\quad+$ - Realized Gains/Losses
+/- Unrealized Gains/Losses
Time Weighted Invested Market Value for the Period

Book Return vs. Total Return

Book Return vs. Total Return

Long Run: Total Return and Book Return...Basically Equal

1-5 Year Tsy/Agy Index Yield History

BAIRD

2016: A Volatile Total Return Year

GVQ0 99) Download		ICE Bc
ICE BofAML 1-5 Year US Treasury Index		
	Currency LOC .	0 \% Hedged
	Periodic Return	Annualized Return
Total Return Factors		
Price Return (Local)	-0.739	-0.739
Income Return (Local)	1.827	1.827
Total Return (Local)	1.088	1.088

A Real World Example

Habit \#7

You Provide Quality, Timely, Transparent Reporting

Clearly Communicating Information to Your Audiences

- Know Your Audiences:
- Governing Body
- Management
- Auditors
- Rating Agencies
- GFOA (CAFR)
- Peers
- Taxpayers
- Be Completely Transparent
- Keep it Simple - Charts/Graphs/Tables
- Provide Details to the Appropriate Audiences
- Demonstrate How the Investment Portfolio is Meeting Objectives
"When performance is measured, performance improves. When performance is measured and reported, the rate of improvement accelerates." Thomas S. Monson

Your Investment Report Should Be on Your Website

You Have a Repeatable, Structured Process Based Upon:

2 Things We Know Well and 1 We Don't:
\checkmark Longer Duration Provides Higher Returns Over the Long Run
\checkmark Your Cash Flows Don’t Always Repeat, But They Usually Really Rhyme
\checkmark Your Can't Time the Market

The views expressed herein are those of the speaker and do not necessarily represent the views of FTN Financial Main Street Advisors, LLC or its affiliates. Views are based on data available at the time of this presentation and are subject to change based on market and other conditions. We cannot guarantee the accuracy or completeness of any statements or data. The information provided does not constitute investment advice and it should not be relied upon as such. It is not a solicitation to with respect to an investment strategy or investment product and is not a solicitation to buy and/or an offer to sell securities. It does not take into account any investor's particular investment objectives, strategies, tax status, or investment horizons. All material has been obtained from sources believed to be reliable, but we make no representation or warranty as to its accuracy and you should not place any reliance on this information. Past performance is no guarantee of future results.

Although this information has been obtained from sources which we believe to be reliable, we do not guarantee its accuracy, and it may be incomplete or condensed. This is for informational purposes only and is not intended as an offer or solicitation with respect to the purchase or sale of any security. All herein listed securities are subject to availability and change in price. Past performance is not indicative of future results, while changes in any assumptions may have a material effect on projected results. Ratings on all securities are subject to change.

FTN Financial Group, FTN Financial Capital Markets, FTN Financial Portfolio Advisors and FTN Financial Municipal Advisors are divisions of First Tennessee Bank National Association (FTB). FTN Financial Securities Corp (FTSC), FTN Financial Main Street Advisors, LLC, and FTN Financial Capital Assets Corporation are wholly owned subsidiaries of FTB. FTSC is a member of FINRA and SIPC-http://www.sipc.org/.

FTN Financial Municipal Advisors is a registered municipal advisor. FTN Financial Portfolio Advisors is a portfolio manager operating under the trust powers of FTB. FTN Financial Main Street Advisors, LLC is a registered investment advisor. None of the other FTN entities including, FTN Financial Group, FTN Financial Capital Markets, FTN Financial Securities Corp or FTN Financial Capital Assets Corporation are acting as your advisor and none owe a fiduciary duty under the securities laws to you, any municipal entity, or any obligated person with respect to, among other things, the information and material contained in this communication. Instead, these FTN entities are acting for their own interests. You should discuss any information or material contained in this communication with any and all internal or external advisors and experts that you deem appropriate before acting on this information or material.

FTN Financial Group, through FTB or its affiliates, offers investment products and services. Investment Products are not FDIC insured, have no bank guarantee and may lose value.

10-Minute Break

Session Two

Leveraging Available Data and Technology

Kevin P. Webb, CFA, Managing Director, Robert W. Baird \& Co.

LUNCH
 Skyview Room

Session Three

Don't Let Accounting Practices Hamstring Your Portfolio

Laura Glenn, CFA, Senior Director, Investment Advisory Services, Public Trust Advisors Jason Klinghoffer, CFA, Director, Debt Capital Markets, Mischler Financial Group

Laura Glenn, CFA
Director, Investment Advisory Services
Public Trust Advisors
laura.glenn@publictrustadvisors.com
$\underset{\sim}{\text { PUBLIC }}$

Jason Klinghoffer, CFA
Director, DCM, Mischler Financial Group
Principal, MaxQ Analytics, LLC
jklinghoffer@mischlerfinancial.com
凯 MISCHLER MaxQ
Mmancon Analytics

Don't Let Accounting Practices Hamstring Your Portfolio

California Debt and Investment Advisory Commission
Public Funds Investment: Strategy in Practice
January 25, 2023 - Montebello, CA

Without reflection, we go blindly on our way, creating more unintended consequences, and failing to achieve anything useful. - Margaret Wheatley

Investment Accounting Survey

What basis of accounting are you using?

- Accrual Basis (60\%)
- Cash Basis (21\%)
- Modified Approach (19\%)

The basis used was determined by:

- Investment personnel (23\%)
- Accounting/Finance personnel (75\%)
- Other (2\%)

Has it always been the basis?

- Yes (88\%)
- No (12\%)

Can the municipality buy a bond at a premium?

- Yes (95\%)
- No (5\%)

If the municipality can buy a bond at a premium, do you amortize the premium over the life of the bond or simply take a loss at maturity?

- Amortize over the life of the bond (90\%)
- Loss at maturity (10\%)

Can the municipality buy a bond with accrued interest?

- Yes (95\%)
- No (5\%)

Topics For Discussion

- Book Earnings Components and Calculations
- Trade Date vs. Settlement Date Accounting
- Accounting Method Breakdown and the Journal Entry Process

Day Count Conventions

What are they?

A day-count convention has two components:

1) The first component determines the number of days in a month which in total equals the total number of days in the accrual period
2) The second component defines the total days in a year.

So a day-count convention is presented in the form of "number of days in the accrual period/number of days in the year.

Security	Information		
Mkt Iss	US DOMESTIC		
Ctry/Reg	US	Currency	USD
Rank	Unsecured	Series	
Coupon	4.375000	Type	Fixed
Cpn Freq S/A			
Day Cnt	30/360	Iss Price	99.18275
Maturity	09/13/2024		

Day Count Conventions

30/360

In the 30/360 method, each month in the accrual period is assumed to have 30 days from the beginning accrual date to the end date, but the number of days in the year is assumed to be 360 . This method is most commonly used for Agencies, Supras, Corporates and ABS/MBS.

Actual/360

In the Actual/360 method, the actual number of days from the beginning accrual date to the end date is used for the accrual period, but the number of days in the year is assumed to be 360 . This method is commonly used by Money-Market instruments.

Actual/365

In the Actual/365 method, the actual number of days from the beginning accrual date to the end date is used for the accrual period, but the number of days in the year is assumed to be 365 . This method is commonly used by term Certificates of Deposit.

Actual/Actual

In the Actual/Actual method, the actual number of days from the beginning accrual date to the end date is used for the accrual period and the actual number of actual days in a year. This method is commonly used by U.S Treasuries.

How Bonds Pay

Treasury Bills/Discount Notes/Commercial Paper

- Bills are typically sold at a discount from the par amount (par amount is also called face value)
- When a bill matures, you are paid its par amount. The difference between what you paid and the par amount is your "interest".
- Day count is Actual/360

Treasury Bonds

- Bonds typically pay interest every six months
- Day Count is Actual/Actual

Government Sponsored Enterprises (GSEs)

- Bonds usually pay interest every six months
- Day count is $30 / 360$

Corporate Medium Term Notes

- Bonds usually pay interest every six months
- Day count is 30/360

Municipals

- Bonds usually pay interest every six months
- Day count is 30/360

Mortgage-Backed and Asset-Backed Securities

- MBS pay monthly
- Day count is $30 / 360$

Calculating Daily Accrual

$30 / 360$
Represents $\underline{30}$ days for each month and $\underline{360}$ days per year

1) Calculate Accrual Days in Period

$30 / 360$	
First Settlement Date	Par Amount
$\mathbf{1 1 / 7 / 2 0 2 2}$	$5,000,000.00$
CF Date	Accrual Days in Period
$6 / 11 / 2023$	$=$ =DAYS360(A13,A15)

2) Total Days in Period $=180$

$30 / 360$		
First Settlement Date	Par Amount	Coupon
$11 / 7 / 2022$	$5,000,000.00$	4.500%
CF Date	Accrual Days in Period	Total Days in Period
$6 / 11 / 2023$	214	180

3) Calculate Daily Accrual Rate

30/360					
First Settlement Date	Par Amount	Coupon			
11/7/2022	5,000,000.00	4.500\%			
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	
6/11/2023	214	180	2		$=\$ 625.00$

Calculating Daily Accrual

Repeat Process for Each Period

1) Calculate Accrual Days in Period

$30 / 360$	
First Settlement Date	Par Amount
$\mathbf{1 1 / 7 / 2 0 2 2}$	$\mathbf{5 , 0 0 0 , 0 0 0 . 0 0}$
CF Date	Accrual Days in Period
$6 / 11 / 2023$	214
$12 / 11 / 2023$	$=$ DAYS360(A15,A16) $=180$

2) Total Days in Period $=180$

$30 / 360$		
First Settlement Date	Par Amount	
$\mathbf{1 1 / 7 / 2 0 2 2}$	$\mathbf{5 , 0 0 0 , 0 0 0 . 0 0}$	Coupon
		4.500%
CF Date	Accrual Days in Period	Total Days in Period
$6 / 11 / 2023$	214	180
$12 / 11 / 2023$	180	180

3) Calculate Daily Accrual Rate

30/360					
First Settlement Date	Par Amount	Coupon			
11/7/2022	5,000,000.00	4.500\%			
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	
6/11/2023	214	180	2	625.00000	
12/11/2023	180	180	2	=(\$ ${ }^{\text {S }} 13^{*}(\$$ C\$13/D16))/C16	$=\$ 625.00$

4) Calculate Total Payout for Period

Calculating Daily Accrual

Example Continued(Using Excel)

5MM - FHLB 4.50 12/11/2026

30/360					
First Settlement Date	Par Amount	Coupon			
11/7/2022	5,000,000.00	4.500\%			
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	Interest Expected
6/11/2023	214	180	2	625.00000	133,750.00
12/11/2023	180	180	2	625.00000	112,500.00
6/11/2024	180	180	2	625.00000	112,500.00
12/11/2024	180	180	2	625.00000	112,500.00
6/11/2025	180	180	2	625.00000	112,500.00
12/11/2025	180	180	2	625.00000	112,500.00
6/11/2026	180	180	2	625.00000	112,500.00
12/11/2026	180	180	2	625.00000	112,500.00

Bloomberg CSHF Function
5MM - FHLB 4.50 12/11/2026

Calculating Daily Accrual

30/360 EOM

EOM designation means bonds have pay dates that equate to the end of the month Non-EOM designation means bonds have the same day for each pay period (most common)
*For Days360 calc, in Accrual Days in Period, you must add two days to $2 / 28$ pay and one day to $2 / 29$ date if previous period was EOM *For Non-EOM, you must add two days if previous pay date was $2 / 28$ and one day if it was $2 / 29$.

Example (Using Excel)

5MM - C 3.80 07/30/2023

Calculating Daily Accrual

ACT/ACT

Represents Actual days for each month and Actual days per year. This method requires one additional calculation for Total Days in Period (these are static values under the other methods)

1) Calculate Accrual Days in Period
ACT/ACT First Nominal Period Date $12 / 31 / 2022$$\quad$ First Settlement Date
$\frac{\text { CF Date }}{12 / 31 / 2022}$
$6 / 30 / 2023$

2) Calculate Total Days in Period ACT/ACT

First Nominal Period Date	First Settlement Date	Par Amount
$12 / 31 / 2022$	$12 / 31 / 2022$	$5,000,000.00$
CF Date	Accrual Days in Period	Total Days in Period
$6 / 30 / 2023$	181	A331-A29 =181

3) Calculate Daily Accrual Rate

ACT/ACT					
First Nominal Period Date	First Settlement Date	Par Amount	Coupon		
12/31/2022	12/31/2022	5,000,000.00	3.875\%		
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	
6/30/2023	181	181	2	=(\$C\$29*(\$D\$29/D31))/C31	$=\$ 535.22099$

4) Calculate Total Payout for Period

ACT/ACT						$=96,875.00$
First Nominal Period Date	First Settlement Date	Par Amount	Coupon			
12/31/2022	12/31/2022	5,000,000.00	3.875\%			
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	Interest Expected	
6/30/2023	181	181	2	535.22099	EE31*B31	

Calculating Daily Accrual

ACT/ACT

long/Short first Coupon

If the bond has a long or short first coupon (First Settlement Date does not create equal period), you must use the Nominal Period date that would make the first cash flow an equal period. For example, if our First Settlement Date was instead 01/15/2023, we would use the Nominal Period Date input of $12 / 31 / 2022$ in the Total Days in Period calculation. This is because $12 / 31 / 2022$ creates the equal period to the first cash flow date Of $6 / 30 / 2023$.

Calculating Daily Accrual

Example Continued (Using Excel)

5MM - T 3.875 12/31/2027

ACT/ACT					
First Nominal Period Date	First Settlement Date	Par Amount	Coupon		
12/31/2022	12/31/2022	5,000,000.00	3.875\%		
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	Interest Expected
6/30/2023	181	181	2	535.22099	96,875.00
12/31/2023	184	184	2	526.49457	96,875.00
6/30/2024	182	182	2	532.28022	96,875.00
12/31/2024	184	184	2	526.49457	96,875.00
6/30/2025	181	181	2	535.22099	96,875.00
12/31/2025	184	184	2	526.49457	96,875.00
6/30/2026	181	181	2	535.22099	96,875.00
12/31/2026	184	184	2	526.49457	96,875.00
6/30/2027	181	181	2	535.22099	96,875.00
12/31/2027	184	184	2	526.49457	96,875.00

Bloomberg CSHF Function
5MM - T 3.875 12/31/2027

Calculating Daily Accrual

ACT/360

Represents Actual days for each month and $\underline{360}$ days per year

Example (Using Excel)
5MM - NORHNY 3.99 05/10/2023

1) Calculate Accrual Days in Period ACT/360

First Settlement Date	Par Amount
$9 / 20 / 2022$	$5,000,000.00$
CF Date	Accrual Days in Period
$5 / 10 / 2023$	$=A 47-A 45$

2) Total Days in Period $=180$

ACT/360		
First Settlement Date	Par Amount	Coupon
$9 / 20 / 2022$	$5,000,000.00$	3.990%
CF Date	Accrual Days in Period	Total Days in Period
$5 / 10 / 2023$	232	180

3) Calculate Daily Accrual Rate

4) Calculate Total Payout for Period

Calculating Daily Accrual

Example Continued (Using Excel)
5MM - NORHNY 3.99 05/10/2023

ACT/360					
First Settlement Date	Par Amount	Coupon			
9/20/2022	5,000,000.00	3.990\%			
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	Interest Expected
5/10/2023	232	180	2	554.16667	128,566.67

Bloomberg CSHF Function 5MM - NORHNY 3.99 05/10/2023

Calculating Daily Accrual

ACT/365

Represents Actual days for each month and $\underline{365}$ days per year

Example (Using Excel)
5MM - HSBC USA 1.30 05/07/2025 (HSBC Bank Negotiable CD)

1) Calculate Accrual Days in Period

ACT/365	
First Settlement Date	Par Amount
$5 / 7 / 2020$	$\mathbf{5 , 0 0 0 , 0 0 0 . 0 0}$
CF Date	Accrual Days in Period
$11 / 7 / 2020$	$=$ A63-A61 $=184$

2) Total Days in Period $=182.5$

ACT/365		
First Settlement Date	Par Amount	Coupon
$5 / 7 / 2020$	$\mathbf{5 , 0 0 0 , 0 0 0 . 0 0}$	$\mathbf{1 . 3 0 0 \%}$
CF Date	Accrual Days in Period	Total Days in Period
$11 / 7 / 2020$	184	182.5

3) Calculate Daily Accrual Rate

4) Calculate Total Payout for Period

ACT/365						
First Settlement Date	Par Amount	Coupon				
5/7/2020	5,000,000.00	1.300\%				
CF Date	Accrual Days in Period	Total Days in Period	Coupon Frequency	Daily Accrual Rate	Interest Expected	
11/7/2020	184	182.5	2	178.08219	=E63*B63	=\$32,767.12

Calculating Daily Accrual

Example Continued (Using Excel)

 5MM - HSBC USA 1.30 05/07/2025\section*{| ACT/365 |
| :--- |
| First Settlement Date |}

5/7/2020

Par Amount

Accrual Days in Period CF Date 1/7/2020
5/7/2021 11/7/2021 5/7/2022 11/7/2022 5/7/2023 11/7/2023 5/7/2024 11/7/2024 5/7/2025

Coupon
1.300\%
 $\frac{\text { Coupon Fre }}{2}$

Daily Accrual Rate
178.08219 178.08219 178.08219 178.08219 178.08219 178.08219 178.08219 178.08219 178.08219 178.08219

Interest

 Expected 32,767.12 32,232.88 32,767.12 32,232.88 32,767.12 32,232.88 32,767.12 32,410.96 32,767.12 32,232.88Bloomberg CSHF Function 5MM - HSBC USA 1.30 05/07/2025

Amortization \& Accretion

- "Due to price volatility, valuing investments at their current price is necessary to provide a realistic measure of a portfolio's true liquidation value"
- GFOA recommends that state and local government officials responsible for investment portfolio reporting determine the market value of all securities in the portfolio on at least a quarterly basis
- It is recommended that the written report include the market value, book value, and unrealized gain or loss of the securities in the portfolio

Amortization \& Accretion

- Amortization and Marked-to-Market Reporting
- Market Closing Price at June 30, 2021: 104-23 5/8 (104.73828125)
- Market Value: \$10,473,828.13
- June 30, 2021:
- Original Cost: $\$ 10,540,625.00$
- Amortized Cost (approximately): \$10,483,356.04
- Market Value: \$10,473,828.13
- Unrealized Loss at 6.30.21: $(\$ 10,473,828.13-\$ 10,483,356.04=\$ 9,527.91)$
- Market Closing Price at June 30, 2022: 99-24 3/16 (99.755859375)
- Market Value: \$9,975,585.94
- June 30, 2022
- Original Cost: \$10,540,625.00
- Amortized Cost (approximately): \$10,241,922.10
- Market Value: \$9,975,585.94
- Unrealized Loss at 6.30.22: $(\$ 9,975,585.94-10,241,922.10=\$ 266,336.16)$

Amortization \& Accretion

Constant Yield/Effective Interest Method

This method utilizes the book yield and book value at purchase to create the amortization or accretion for each period through the Purchase to Worst (Workout) date.

This method is more complex than straight-line and is usually done using sophisticated programs.

Period Beg Book Value X
Purchase Yield X Time in Period (where full year =1)
5,153,879.42 X . 0175 X . 5 = \$45,096.44

Example (Using Excel) 5MM - FHLB 2.55 05/30/2023 Workout Date = Maturity Date

Amortization \& Accretion

Constant Yield/Effective Interest Method

Example (Using Excel)
5MM - FHLB 2.55 05/30/2023
Workout Date $=$ Maturity Date

*Slight rounding errors could be present between Excel and Bloomberg

Amortization \& Accretion

Straight Line Method

This method simply takes the total amount to be amortized or accreted and applies an even amount across each period being measured

This method is easy to compute and is the primary method utilized by public entities.

Example (Using Excel)
5MM - FHLB 2.55 05/30/2023
Workout Date = Maturity Date

J		L	M	
	K			N
	Purchase Price	Principal Paid	Total to be Amortized	Se tlement Date
	103.2848149381	5,164,240.75	164,240.75	2/20/2019
CF Date	Days in Period	Annual Interest Days	Daily Amortization	Amount Amortized
5/30/2019	100	360	106.6498377	10,664.98
11/30/2019	180	360	106.6498377	19,196.97
5/30/2020	180	360	106.6498377	19,196.97
11/30/2020	180	360	106.6498377	19,196.97
5/30/2021	180	360	106.6498377	19,196.97
11/30/2021	180	360	106.6498377	19,196.97
5/30/2022	180	360	106.6498377	19,196.97
11/30/2022	180	360	106.6498377	19,196.97
5/30/2023	180	360	106.6498377	19,196.97

Amortization \& Accretion

Selecting Amortization/Accretion Dates (Best Practices)

Bullet Structures (No Call Option or Busted Call)

* Amortize/Accrete to the maturity date.

Callable Structures (Call Option is Present)
*Premium callables amortize to the next call date.
*Discount callables accrete to maturity.

Step Coupons Structures (Callable or Non-Callable)

*Amortize/Accrete to date corresponding to the yield-to-worst. This could be next call, next step, maturity or something in-between. YTC function in Bloomberg will give this date so you should obtain it from your broker.

Floating Rates (SOFR, Prime, Fed Funds, 3MoCMT, etc.)

*Floaters should generally be amortized to maturity as that is typically how DM/Yield is reported. Other methods could be applied (to index reset, to coupon date)

ABS/MBS
*To Weighted Avg Life principal window. In theory, it is best practice to adjust amortization rate each period by the adjusted principal window provided by changing prepayment rate speeds (labor intensive to say the least).

Are you using Trade Date or Settlement Date when posting to your JE?

a) Trade Date
b) Settlement Date
c) Don't Know

Trade Date vs Settlement Date Accounting

What Are They?

The trade date of a security is the date the agreement is entered into where elements of the transaction including the security description, quantity, price, and delivery terms are set.

The date the securities must be delivered and payment received is referred to as the settlement date.

The method you choose affects when the purchase or redemption of a security is recorded and whether a receivables (redemption) or payables (purchase) account must be created.

Purchase 6MM of a security on 08/09/2022 @ 100			
Bond Settles on 08/11/2022			
			Debit
Credit			
Trade Date Accounting:			
$8 / 9 / 2022$	Bond Account	$6,000,000.00$	
	Payables Acccount		$6,000,000.00$
$8 / 11 / 2022$	Payables Acccount	$6,000,000.00$	
	Cash Account		$6,000,000.00$

Settlement Date Accounting:			
$8 / 11 / 2022$	Bond Account	$6,000,000.00$	
	Cash Account		$6,000,000.00$

Trade Date vs Settlement Date Accounting

Does It Matter What Method You Choose?

GASB has made it pretty clear that Trade Date Accounting is the method that public entities should be using.
6.28 Display in the Change Statement
6.28.1. Q—Should investment transactions be accounted for based on the trade date (the date the order to buy or sell the investment is placed) or the settlement date (the date that the cash and investment instrument are exchanged)?(Q\&A31-66) [Amended 2013]

A-Investment transactions should be accounted for based on the trade date. The trade date is the date on which the transaction occurred and is the date the government is exposed to (or released from) the rights and obligations of the ownership of the instrument. This guidance is consistent with paragraph 20 of Statement 25, as amended, and paragraph 18 of Statement 67

However, under FASB, which maintains U.S. GAAP, ASC 320 allows either method unless you are a depository or lending institution, broker-dealer, or investment company (CFA GIPS follows suit by mandating GIPS compliant firms to using Trade Date).

Trade Date vs Settlement Date Accounting

Does It Matter What Method You Choose?

Despite the GASB advisory, Settlement Date accounting is still utilized by many public institutions.
The justification for this may come from several fronts.

1) U.S. GAAP does not require Trade Date accounting for general institutions not falling under the financial institution category.
2) Trade Date accounting roots are in mark-to-market and measuring potential value changes.

- This can occur in securities classified as Trading or Available For Sale under U.S. GAAP, however public institutions generally carry securities as a Held-to-Maturity category.
- GASB 31 requires mark to market only once a year so valuation changes would likely not be recorded for each purchase or redemption regardless of method.

3) Financial regulators have sought better technology to minimize time between trade date and settlement date. In 2017 they moved most transactions from $\mathrm{T}+3$ to $\mathrm{T}+2$ and there are talks that may move to $\mathrm{T}+1$ in the near future. This would create virtually no benefit to Trade Date accounting.

What method of accounting are you currently using?
a) Full Accrual
b) Modified Accrual
c) Cash Basis
d) Don't Know

Accounting Methods

Full Accrual Method (Accrued Interest - Amortization/Accretion)

This accounting method measures interest as it is earned and amortizes/accretes any premiums or discounts paid at purchase.

- Primary method used in both corporate and government accounting
- Represents the most accurate way to measure return
- Labor intensive requiring more journal entries than all other methods
- Can cause accounting headaches when dealing with pool/participant payouts. (e.g. can't payout cash you haven't received yet)

Accounting Methods

Full Accrual Basis (ACT/ACT) Security					
Purchase 3MM of T 1.50 10/31/2024 @ 101.617					
Settlement on 12/31/2021-Dec 2021 Entries					
Account	Date Posted	Debit	Credit	Activity	Notes
Treasury (Asset)	12/31/2021	3,000,000.00		Investment Purchase	
Purchased Premium (Asset)	12/31/2021	48,510.00		Premium Paid at Purchase	
Purchased Accrued Interest (Asset)	12/31/2021	7,582.87		Accrued Paid at Purchase	
Cash (Asset)	12/31/2021		3,056,092.87	Investment Purchase	
Accrued Interest (Asset)	12/31/2021	124.31		Accrued Interest	Daily Rate $=124.30939$
Interest Earnings (Income)	12/31/2021		124.31	Accrued Interest	Daily Rate $=124.30939$
Amortization Expense (Income)	12/31/2021	46.87		Amortization	Daily Rate $=46.86956$
Treasury (Asset)	12/31/2021		46.87	Amortization	Daily Rate $=46.86956$
Full Accrual Basis (ACT/ACT) Security					
First Coupon Since Purchase - May 2022 Entries					
4/30/22 Pay Date is a Saturday					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	5/2/2022	22,500.00		Interest Income Payment	4/30/22 Is a Saturday
Accrued Interest (Asset)	5/2/2022		14,917.13	Interest Income Received	4/30/22 Is a Saturday
Purchased Accrued Interest (Asset)	5/2/2022		7,582.87	Interest Income - Purchase Adjustment	4/30/22 Is a Saturday
Accrued Interest (Asset)	5/31/2022	3,790.76		Accrued Interest	Daily Rate $=122.28261$
Interest Earnings (Income)	5/31/2022		3,790.76	Accrued Interest	Daily Rate $=122.28261$
Amortization Expense (Income)	5/31/2022	1,452.96		Amortization	Daily Rate $=46.86956$
Treasury (Asset)	5/31/2022		1,452.96	Amortization	Daily Rate $=46.86956$
Full Accrual Basis (ACT/ACT) Security					
Redemption on 10/31/2024-Oct 2024 Entries					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	10/31/2024	3,000,000.00		Investment Maturity	
Treasury (Asset)	10/31/2024		3,000,000.00	Investment Maturity	
Cash (Asset)	10/31/2024	22,500.00		Interest Income Payment	
Accrued Interest (Asset)	10/31/2024		22,500.00	Interest Income Received	
Accrued Interest (Asset)	10/31/2024	3,790.76		Accrued Interest	Daily Rate $=122.28261$
Interest Earnings (Income)	10/31/2024		3,790.76	Accrued Interest	Daily Rate $=122.28261$
Amortization Expense (Income)	10/31/2024	1,452.96		Amortization	Daily Rate $=46.86956$
Treasury (Asset)	10/31/2024		1,452.96	Amortization	Daily Rate $=46.86956$

Accounting Methods

Modified Accrual Method (Accrued Interest - No Amortization/Accretion)
This accounting method measures interest as it is earned and does not amortize/accrete any premiums or discounts paid at purchase.

- Decreases journal entries with removal of amortization/accretion
- Will force fund to take gain or loss at redemption for premium or discount paid
- Creates constraints to not buy premiums to avoid big losses at redemption
- Pools can be gamed by participants to avoid months with heavy redemptions
- Can create a volatile return number month over month
- Can cause accounting headaches when dealing with pool/participant payouts. (e.g. can't payout cash you haven't received yet)

Accounting Methods

Modified Accrual Basis (ACT/ACT) Security Purchase 3MM of T 1.50 10/31/2024 @ 101.617 Settlement on 12/31/2021 - Dec 2021 Entries

Account	Date Posted	Debit	Credit	Activity	Notes
Treasury (Asset)	12/31/2021	3,000,000.00		Investment Purchase	
Purchased Premium (Asset)	12/31/2021	48,510.00		Premium Paid at Purchase	
Purchased Accrued Interest (Asset)	12/31/2021	7,582.87		Accrued Paid at Purchase	
Cash (Asset)	12/31/2021		3,056,092.87	Investment Purchase	
Accrued Interest (Asset)	12/31/2021	124.31		Accrued Interest	Daily Rate $=124.30939$
Interest Earnings (Income)	12/31/2021		124.31	Accrued Interest	Daily Rate $=124.30939$
Modified Accrual Basis (ACT/ACT) Security					
First Coupon Since Purchase - May 2022 Entries					
4/30/22 Pay Date is a Saturday					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	5/2/2022	22,500.00		Interest Income Payment	4/30/22 Is a Saturday
Accrued Interest (Asset)	5/2/2022		14,917.13	Interest Income Received	4/30/22 Is a Saturday
Purchased Accrued Interest (Asset)	5/2/2022		7,582.87	Interest Income - Purchase Adjustment	4/30/22 Is a Saturday
Accrued Interest (Asset)	5/31/2022	3,790.76		Accrued Interest	Daily Rate $=122.28261$
Interest Earnings (Income)	5/31/2022		3,790.76	Accrued Interest	Daily Rate $=122.28261$
Modified Accrual Basis (ACT/ACT) Security					
Redemption on 10/31/2024-Oct 2024 Entries					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	10/31/2024	3,000,000.00		Investment Maturity	
Treasury (Asset)	10/31/2024		3,000,000.00	Investment Maturity	
Realized Losses (Income)	10/31/2024	48,510.00		Realized Loss at Redemption	
Purchased Premium (Asset)	10/31/2024		48,510.00	Remaining Premium	
Cash (Asset)	10/31/2024	22,500.00		Interest Income Payment	
Accrued Interest (Asset)	10/31/2024		22,500.00	Interest Income Received	
Accrued Interest (Asset)	10/31/2024	3,790.76		Accrued Interest	Daily Rate $=122.28261$
Interest Earnings (Income)	10/31/2024		3,790.76	Accrued Interest	Daily Rate $=122.28261$

Accounting Methods

Modified Accrual Method (Cash Interest - Amortization/Accretion Included)
This accounting method measures interest as it is paid and does amortize/accrete any premiums or discounts paid at purchase.

- Decreases journal entries with removal of accrued interest
- Purchased interest is usually counted against current month earnings
- Creates constraints to not buy secondary issues that have purchase accrued
- Pools can be gamed by participants avoiding low cash payment months
- Can create a volatile return number month over month
- Makes it easy to handle pool/participant payouts

Accounting Methods

Modified Cash Basis (ACT/ACT) Security
Purchase 3MM of T 1.50 10/31/2024 @ 101.617
Settlement on 12/31/2021 - Dec 2021 Entries

Account	Date Posted	Debit	Credit	Activity	Notes
Treasury (Asset)	12/31/2021	3,000,000.00		Investment Purchase	
Purchased Premium (Asset)	12/31/2021	48,510.00		Premium Paid at Purchase	
Purchased Accrued Interest (Asset)	12/31/2021	7,582.87		Accrued Paid at Purchase	
Cash (Asset)	12/31/2021		3,056,092.87	Investment Purchase	
Interest Earnings (Income)	12/31/2021	7,582.87		Earnings Loss at Purchase	
Purchased Accrued Interest (Asset)	12/31/2021		7,582.87	Remaining Purchase Accrued	
Amortization Expense (Income)	12/31/2021	46.87		Amortization	Daily Rate $=46.86956$
Treasury (Asset)	12/31/2021		46.87	Amortization	Daily Rate $=46.86956$
Modified Cash Basis (ACT/ACT) Security					
First Coupon Since Purchase - May 2022 Entries					
4/30/22 Pay Date is a Saturday					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	5/2/2022	22,500.00		Interest Income Payment	4/30/22 Is a Saturday
Interest Earnings (Income)	5/2/2022		22,500.00	Interest Income Received	4/30/22 Is a Saturday
Amortization Expense (Income)	5/31/2022	1,452.96		Amortization	Daily Rate $=46.86956$
Treasury (Asset)	5/31/2022		1,452.96	Amortization	Daily Rate $=46.86956$
Modified Cash Basis (ACT/ACT) Security					
Redemption on 10/31/2024-Oct 2024 Entries					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	10/31/2024	3,000,000.00		Investment Maturity	
Treasury (Asset)	10/31/2024		3,000,000.00	Investment Maturity	
Cash (Asset)	10/31/2024	22,500.00		Interest Income Payment	
Interest Earnings (Income)	10/31/2024		22,500.00	Interest Income Received	
Amortization Expense (Income)	10/31/2024	1,452.96		Amortization	Daily Rate $=46.86956$
Treasury (Asset)	10/31/2024		1,452.96	Amortization	Daily Rate $=46.86956$

Accounting Methods

Cash Method (Cash Interest - No Amortization/Accretion)

This accounting method measures interest as it is paid and does not amortize/accrete any premiums or discounts paid at purchase.

- Easiest method for JE with removal of accrued interest and amortization/accretion entries
- Purchased interest is usually counted against current month earnings
- Will force fund to take gain or loss at redemption for premium or discount paid
- Creates constraints to not buy secondary issues that have purchase accrued
- Creates constraints to not buy premiums to avoid big losses at redemption
- Pools can be gamed by participants avoiding low cash payment months
- Pools can be gamed by participants to avoid months with heavy redemptions
- Can create a volatile return number month over month
- Makes it easy to handle pool/participant payouts.

Accounting Methods

Cash Basis (ACT/ACT) Security					
Purchase 3MM of T 1.50 10/31/2024 @ 101.617					
Settlement on 12/31/2021-Dec 2021 Entries					
Account	Date Posted	Debit	Credit	Activity	Notes
Treasury (Asset)	12/31/2021	3,000,000.00		Investment Purchase	
Purchased Premium (Asset)	12/31/2021	48,510.00		Premium Paid at Purchase	
Purchased Accrued Interest (Asset)	12/31/2021	7,582.87		Accrued Paid at Purchase	
Cash (Asset)	12/31/2021		3,056,092.87	Investment Purchase	
Interest Earnings (Income)	12/31/2021	7,582.87		Earnings Loss at Purchase	
Purchased Accrued Interest (Asset)	12/31/2021		7,582.87	Remaining Purchase Accrued	
Cash Basis (ACT/ACT) Security					
First Coupon Since Purchase - May 2022 Entries					
4/30/22 Pay Date is a Saturday					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	5/2/2022	22,500.00		Interest Income Payment	4/30/22 Is a Saturday
Interest Earnings (Income)	5/2/2022		22,500.00	Interest Income Received	4/30/22 Is a Saturday
Cash Basis (ACT/ACT) Security					
Redemption on 10/31/2024-Oct 2024 Entries					
Account	Date Posted	Debit	Credit	Activity	
Cash (Asset)	10/31/2024	3,000,000.00		Investment Maturity	
Treasury (Asset)	10/31/2024		3,000,000.00	Investment Maturity	
Realized Losses (Income)	10/31/2024	48,510.00		Realized Loss at Redemption	
Purchased Premium (Asset)	10/31/2024		48,510.00	Remaining Premium	
Cash (Asset)	10/31/2024	22,500.00		Interest Income Payment	
Interest Earnings (Income)	10/31/2024		22,500.00	Interest Income Received	

Accounting Methods

Method Selection Definitely Matters

A few months back an account approached me with a peculiar problem. They were looking to do a trade of a full faith and credit bond (Treasury) out around the 1.5 yr mark.

Doesn't sound too complicated, but in this case the account could not buy a bond with accrued interest and they could not buy a bond at a premium. Either component would create a negative hit to earnings as any accrued paid goes against that month's earnings and premiums will be reflected as losses at redemption.

These constraints knocked out the ability to buy a coupon bearing Treasury (all had accrued interest factors) and we couldn't do a zero coupon bill that long. This left us with only being able to buy a Principal Strip (Separate Trading of Registered Interest and Principal of Securities).

The client was forced to buy a lower yielding asset that is less liquid all because of arbitrary accounting policies put in place.

To be fair, this was not the investment manager's fault as they were only working around the constraints placed on them by others.

Accounting Methods

The account stands to miss out on tens of thousands per year in interest all because of this policy.

Accounting Methods

Summary

- Methodology has a significant impact on Treasury's ability to function appropriately
- Strive to develop a working relationship between accounting and treasury departments
- "It's just how we do it" is not an out to just keep doing what you are doing
- If you operate under any method besides full accrual, understand the tradeoffs and consider advocating for a change
- If you don't know what is happening in your organization, then
 do some research. You may be surprised to see your expectations differ from reality.

Knowing what you know now, are you satisfied with the way your entity is approaching the accounting process?
a) Yes
b) No
c) I Need To Do More Internal Research
d) I Don't Really Care

Thank You!

If you have any questions or comments please reach out and we would be happy to discuss.
Thank you for attending!

Disclosure

This presentation is for informational purposes only. All information is assumed to be correct, but the accuracy has not been confirmed and therefore is not guaranteed to be correct. Information is obtained from third party sources that may or may not be verified. The information presented should not be used in making any investment decisions and is not a recommendation to buy, sell, implement, or change any securities or investment strategy, function, or process.
Any financial and/or investment decision should be made only after considerable research, consideration, and involvement with an experienced professional engaged for the specific purpose. All comments and discussion presented are purely based on opinion and assumptions, not fact. These assumptions may or may not be correct based on foreseen and unforeseen events.

All calculations and results presented are for discussion purposes only and should not be used for making calculations and/or decisions. The data in this presentation is unaudited.

Many factors affect performance including changes in market conditions and interest rates and in response to other economic, political, or financial developments. Investment involves risk including the possible loss of principal. No assurance can be given that the performance objectives of a given strategy will be achieved. Past performance is not an indicator of future performance or results. Any financial and/or investment decision may incur losses.

15-Minute Break

Session Four

Duration and Asset/Liability Management (ALM): Practical Approach, Theory and Case Study

Jason Klinghoffer, CFA, Director, Debt Capital Markets, Mischler Financial Group Hubert R. White III, CFA, CTP, Chief Investment Officer, City and County of San Francisco

Hubie White, CFA
Chief Investment Officer City \& County of San Francisco hubert.white@sfgov.org

Jason Klinghoffer, CFA
Director, DCM, Mischler Financial Group Principal, MaxQ Analytics, LLC jklinghoffer@mischlerfinancial.com

Duration and Asset/Liability Management (ALM): Practical Approach, Theory and Case Study.

California Debt and Investment Advisory Commission Public Funds Investment: Strategy in Practice January 25, 2023 - Montebello, CA

If you are involved in the investment process, do you have a strategic plan in place that includes cash flow projections, duration targets, and sector/maturity allocation requirements?
A) Yes
B) No

Strategy Development Steps for Public Investors

"Don't Beat the Market, Be the Market"

Harvard Endowment: Had 230 employees until 2017, Top 6 executives took home over $\$ 40 \mathrm{MM}$ in compensation.

Lost to S\&P index by over 100bp over last 20 years and almost 500Bp over past 10 years.

Lost to the S\&P annually for the last 12 years straight.

5 Takeaway's:

- Performance Persistance is Rare:
- Harvard's few moments of glory have been dwarfed by it's failures.
- Overconfidence is an obstacle:
- Those who have seen success get complacent and assume they are smarter than they really are.
- Reversion to the mean is powerful:
- Sector outperformance comes and goes and is hard to predict.
- Many years of skill required to beat luck:
- Statistically speaking, you would need many decades to understand if manager is superior.
- Indexes are hard to beat:
- Harvard would have even lost out to a blended portfolio of 60% stocks, 40% US Bonds over last 20 years.

The best and brightest
Annualized total return through June 30, 2020

Interest Rate Speculation

The Truth About Flat Yield Curves

Rates: Dec 1986 to Dec 2022
\$100MM Portfolio

Buy: 3Mo, Roll 3Mo
Buy: 2Yr

Can't Beat the Market, So Now What?

- Public entities generally exhibit predictive cash flows in both magnitude and timing.
- This allows public funds to create duration optimized (interest rate risk centric) allocations.
- Allocations should reflect the legal guidance of the investment policy and the desired weights of allowable sectors based on risk/reward and ALM preferences.
- Portfolio construction: Safety (IR Risk, credit), liquidity, diversified, legal, market rate of return.

Duration, Duration, Duration!

Being invested is more important than the allocation decision!

Moving from Cash to two duration in Treasuries:
Pickup approx. 40Bp Avg Yield
Moving from two duration in Treasuries to two duration in Agency Bullets
Pickup approx. 9Bp Avg Yield
Moving from two duration in Agency Bullets to maturity matched Agency Callables:
Pickup approx. 5Bp in Avg Yield

Anatomy of Duration

MACAULAY DURATION

Economist Frederick Macaulay proposed simple formula (1938) to measure the time required to recover the initial cost of the bond (present value).

Weights are given to the present value of each cash flow (coupon payment) at the applicable interest rate for the life of the bond (YTM) then divided by the market price.

[PV(CF1)*p1+PV(CF2)*p2...PV(CFn)*Pn\} / Market Price of Bond

Thus, Macaulay Duration states the time period within which the present value of the bond will be realized.
e.g. Current 5 Year Treasury has duration of 4.805.

The duration of a bond will always be less than its maturity period.

MODIFIED DURATION

Macaulay Duration was a good tool when it was conceived to compare bonds on a relative basis as to when an investor could expect to receive the cost of their investment back. The shorter the Macaulay Duration, the "less risk" was perceived by the investor since the PV of the bond would be received sooner.

However, Macaulay Duration's shortfall was it's inability to measure risk associated with holding the bond during its existence. Macaulay Duration lacks the ability to measure changes in value as interest rates fluctuate.

To correct for this, the simple division of the Macaulay Duration by (1+YTM) will convert the Mac Duration from a time based receipt of cash flows to the approximate change in price given a 100bp move in rates.

EFFECTIVE DURATION

Same as Modified Duration but accounts for prepayment risk in callables and amortizing product. Requires additional sophistication (OAS Model) to obtain.

Effective Duration SHOULD ALWAYS be used when a portfolio invests in callable or MBS type securities.

Why Do We Care?

- We know modified duration measures the approximate change in value for a 100bp change in interest rates.
- Because Modified Duration has Macaulay Duration as an input, we know that TVM (time value of money) principles apply.
- Thus, we can show that in normal markets over long periods of time, the more duration we take on (risk), the more return we can achieve.
- Since earning a Market Rate of Return is a core objective (albeit a lower priority one), maximizing duration given safety and liquidity are taken care of is important. It will be the core determinant of how much income/return can be derived from the portfolio.

- Sector and structure profile is of secondary importance to duration.

Approaches for Determining Portfolio Duration

Market Based - Curve(s)

- Manager uses a single or set of interest rate curves and measures risk/reward profile to establish duration.
- Example: A Treasury curve is used to remove credit risk and determine optimal spot on the curve over some period of time.
- Manager could also use a set of curves and based on sector and structure preference could weight each curve accordingly to get blended duration.

Approaches for Determining Portfolio Duration

Market Based Approach

Single or Multiple Curve Analysis

				Interest Rate Risk Analysis Analysis Dates: Jul 31, 2006 - Jul 31, 2021						RISK SELECTION			$\begin{aligned} & \text { Main Street } \\ & \text { Ratio } \end{aligned}$	Yield/Edur \% of30Yr	$\begin{aligned} & \text { TR /Std Dev \% of } \\ & \text { 30Yr } \end{aligned}$	Weighted Rank									
				Select	1.00Yr Tsy																				
			Annualized Income Return							$\begin{aligned} & \text { Annualized } \\ & \text { Std Dev } \\ & \text { Total } \\ & \text { Return } \end{aligned}$	Annualized Std Dev Price Return	Annualized Std Dev Income Return					Avg Yield to Worst	$\begin{gathered} \text { Avg Eff } \\ \text { Dur } \end{gathered}$	$\begin{gathered} \text { TR Sharpe } \\ \text { Ratio } \end{gathered}$	$\begin{gathered} \text { YId Sharpe } \\ \text { Ratio } \end{gathered}$	Income Return Ratio	$\begin{aligned} & \text { Price } \\ & \text { Return } \\ & \text { Ratio } \end{aligned}$	index dates		
	Total Return	Price Return		Start Date End Date	7/31/06																				
3Mo Tsy	1.055\%	1.055\%			0.454\%	0.454\%	0.000\%	0.946\%	0.235						28.6\% / 1.2\%	15.2\% / 3.1\%		7/31/21							
6Mo Tsy	1.355\%	1.355\%		0.539\%	0.539\%	0.000\%	1.040\%	0.484	0.556	0.065		0.556	0.193	31.5\% / 2.5\%	19.5\% / 3.6\%	9	RISK/REWARD WEIGHTING								
9Mo Tsy	1.466\%	0.684\%	0.783\%	0.629\%	0.533\%	0.211\%	1.101\%	0.735	0.641	0.110	0.355	0.278	0.206	33.3\% / 3.8\%	21.1\% / 4.2\%	3	TR Sharpe Ratio		0.00\%						
1.00Yr Tsy	1.576\%	0.013\%	1.566\%	0.719\%	0.528\%	0.422\%	1.162\%	0.986	0.725	0.155	0.711		0.219	35.2\% / 5.1\%	22.7\% / 4.9\%	1	Yld Sharpe Ratio		0.00\%						
1.25 Yr Tsy	1.718\%	0.217\%	1.539\%	0.873\%	0.701\%	0.411\%	1.193\%	1.225	0.747	0.182	0.608	0.000	0.208	36.1\% / 6.3\%	24.7\% / 5.9\%	2	Income Return Ratio		0.00\%						
1.50Yr Tsy	1.860\%	0.422\%	1.512\%	1.028\%	0.874\%	0.400\%	1.225\%	1.463	0.770	0.210	0.506	0.000	0.197	37.1\% / 7.5\%	26.8\% / 6.9\%	7	Price Return Ratio		0.00\%						
1.75 Yr Tsy	2.002\%	0.626\%	1.486\%	1.183\%	1.047\%	0.389\%	1.256\%	1.701	0.792	0.238	0.404	0.000	0.187	38.0\% / 8.7\%	28.8\% / 8.0\%	13	Main Street Ratio		100.00\%						
2.00Yr Tsy	2.144\%	0.830\%	1.459\%	1.338\%	1.221\%	0.377\%	1.287\%	1.939	0.814	0.265	0.302		0.176	39.0\% / 10.0\%	30.9\% / 9.0\%	20									
2.25 Yr Tsy	2.305\%	0.910\%	1.565\%	1.515\%	1.400\%	0.384\%	1.334\%	2.171	0.822	0.308	0.328	0.012	0.178	40.4\% / 11.1\%	33.2\% / 10.2\%	19									
2.50 Yr Tsy	2.466\%	0.990\%	1.672\%	1.691\%	1.580\%	0.391\%	1.381\%	2.403	0.831	0.351	0.354	0.023	0.180	41.8\% / 12.3\%	35.5\%/11.4\%	18									
2.75 Yr Tsy	2.626\%	1.070\%	1.778\%	1.867\%	1.760\%	0.397\%	1.427\%	2.635	0.839	0.394	0.380	0.035	0.182	43.2\% / 13.5\%	37.8\% / 12.6\%	17									
3.00 Yr Tsy	2.787\%	1.151\%	1.884\%	2.044\%	1.940\%	0.404\%	1.474\%	2.866	0.847	0.437	0.406	0.047	0.184	44.6\% / 14.7\%	40.1\% / 13.8\%	16									
3.25 Yr Tsy	2.929\%	1.251\%	1.959\%	2.258\%	2.158\%	0.394\%	1.528\%	3.101	0.837	0.491	0.402	0.071	0.186	46.3\% / 15.9\%	42.2\% / 15.3\%	14									
3.50 Yr Tsy	3.071\%	1.351\%	2.034\%	2.473\%	2.377\%	0.384\%	1.582\%	3.336	0.826	0.544	0.399	0.095	0.189	47.9\% / 17.1\%	44.2\% / 16.7\%	12									
3.75 Yr Tsy	3.213\%	1.452\%	2.108\%	2.687\%	2.595\%	0.374\%	1.636\%	3.570	0.816	0.598	0.396	0.119	0.191	49.5\% / 18.3\%	46.3\% / 18.2\%	11									
4.00 Yr Tsy	3.355\%	1.552\%	2.183\%	2.902\%	2.814\%	0.364\%	1.690\%	3.805	0.805	0.652	0.393	0.143	0.193	51.2\% / 19.5\%	48.3\% / 19.6\%	10									
4.25 Yr Tsy	3.497\%	1.652\%	2.258\%	3.117\%	3.033\%	0.354\%	1.744\%	4.040	0.794	0.705	0.389	0.167	0.196	52.8\% / 20.7\%	50.4\% / 21.1\%	8									
4.50 Yr Tsy	3.639\%	1.753\%	2.332\%	3.331\%	3.251\%	0.344\%	1.798\%	4.274	0.784	0.759	0.386	0.191	0.198	54.4\% / 21.9\%	52.4\% / 22.5\%	6									
4.75 Yr Tsy	3.781\%	1.853\%	2.407\%	3.546\%	3.470\%	0.334\%	1.852\%	4.509	0.773	0.813	0.383	0.215	0.200	56.1\% / 23.1\%	54.4\% / 24.0\%	5									
5.00Yr Tsy	3.923\%	1.954\%	2.482\%	3.760\%	3.689\%	0.324\%	1.906\%	4.744	0.763	0.867	0.379	0.239	0.202	57.7\% / 24.4\%	56.5\% / 25.4\%	4									
10.00Yr Tsy	4.761\%	2.090\%	3.375\%	7.020\%	6.968\%	0.293\%	2.594\%	8.846	0.528	1.623	0.330	0.147	0.186	78.5\% / 45.4\%	68.6\% / 47.4\%	15									
30.00Yr Tsy	6.945\%	3.482\%	4.960\%	14.802\%	14.766\%	0.265\%	3.303\%	19.478	0.398	2.514	0.264	0.164	0.121			21									

Approaches for Determining Portfolio Duration

Market Based Approach
 Single or Multiple Curve Analysis

- Uses simple methodology by utilizing a single or multiple curves that are easily accessible.
- Risk/Reward is measured through principles like the Sharpe Ratio or a duration modified Sharpe Ratio and are relatively simple calculations.
- Does not capture true portfolio exposure (single curve used to measure duration, but portfolio is allocated across different sectors).
- Multiple curve approach requires sector allocation desires before duration established (chicken vs. egg).
- Mean-Variance Analysis possible, but requires sophistication and still optimizes market-based volatility to expected returns.
- Does not account for liabilities or cash flow needs of portfolio.

Approaches for Determining Portfolio Duration

Market Based - Index Sets

- Manager uses a set of indices and measures risk/reward profiles accordingly (ICE/BAML, Lehman/Bloomberg, etc..).
- Like multiple curves, the manager could weight their preference of sectors and structures and determine the optimal blended duration for the portfolio.

Approaches for Determining Portfolio Duration

Market Based Approach Single or Multiple Index Analysis

$0-1 \mathrm{Yr}$ Agy Composite $=.53$
1 - 3Yr A-AAA Corporate $=1.93$
Blended 50/50 Duration= 1.23

Approaches for Determining Portfolio Duration

Market Based Approach
 Single or Multiple Index Analysis

Treasuries represent 97.0\% of

CHARACTERISTICS	Chandler Short Term Bond	ICE BAML 1-5 Year Us Treasury \& Agency Index
Average Maturity	2.53	2.67
Average Duration	2.31	2.54
Yield-to-Maturity	2.71%	2.52%
Average Quality*	AA	AAA
Average Coupon	1.99%	2.18%

*Composite quality based on S\&P ratings. Index quality reflects S\&P equivalent of composite/average of S\&P, Moody's and Fitch ratings. Composite characteristics are supplemental information under GIPS and supplement the composite presentation herein.

Approaches for Determining Portfolio Duration

Market Based Approach

Single or Multiple Index Analysis

- Again uses simple methodology by utilizing a single or multiple indices that are easily accessible.
- Risk/Reward is measured through principles like the Sharpe Ratio or a duration modified Sharpe Ratio and are relatively simple calculations.
- Single Indices like the ICE BofAML 1-5 Tsy / Agy can be heavily weighted in one sector.
- Does not capture liquidity needs or actual allocation exposure of your portfolio (unless several indices are used with actual exposure weights).
- Multiple index approach requires sector allocation desires before duration established (chicken vs. egg)
- Does not account for liabilities or cash flow needs of portfolio.

Approaches for Determining Portfolio Duration

Cash Flow Based - ALM

- Utilizes cash flow analysis to measure the timing and magnitude of liabilities.
- Uses immunization techniques utilized in the insurance and pension world to measure individual liability streams.
- These liability streams are combined and weighted to derive a total portfolio duration that will suffice to match the liability needs.

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Dedication Strategy: Specialized fixed-income strategy designed to accommodate specific funding needs of the investor. They generally are classified as passive in nature, although it is possible to add some active management elements to them.

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Immunization: Aims to construct a portfolio that, over a specified horizon, will earn a predetermined return regardless of interest rate changes (duration focused). An increase in rates and the corresponding drop in investment value partially offset by an increase in reinvestment rates (and vice-versa).

Cash Flow Matching: Provides the future funding of a liability stream from the coupon and matured principal payments of the portfolio (not duration focused). A simple accumulation of the coupon, reinvestment return and value at horizon will offset liability in full.

Neither strategy perfectly fits public treasury as public entities must focus on Duration as a primary risk metric and typically spend coupons as anticipated by their budget.

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Combination Matching (also called horizon matching): Popular variation of multiple immunization and cash flow matching to fund liabilities by combining the two strategies. A portfolio is created that is duration-matched with the added constraint that it be cash flowmatched in the first few years, usually the first five years.

Since most public entities are policy constrained to five years and in, we can combine the strategies for the entire legal timeframe of the portfolio.

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 1 - Liquidity Profile

Enter Receipts and Disbursements for 36 months (or desired length) to calculate Net Cash Flow per month over the last three years.

If data is difficult to obtain, a portfolio proxy can be used by utilizing the month over month change in book value of the portfolio as the net cash flow.

MAX MA,			Cash Flow Entry Sample City	Update Data
	Date	Receipts	Expenditures	Net Flow
1	08/31/2018	\$24,471,632.81	\$26,953,467.16	(\$2,481,834.35)
2	09/30/2018	\$23,559,974.56	\$25,279,925.18	(\$1,719,950.62)
3	10/31/2018	\$30,230,063.91	\$32,487,689.44	(\$2,257,625.53)
4	11/30/2018	\$51,936,945.68	\$29,593,564.84	\$22,343,380.84
5	12/31/2018	\$24,127,233.19	\$36,589,847.89	(\$12,462,614.70)
6	01/31/2019	\$24,918,896.36	\$38,186,973.19	(\$13,268,076.83)
7	02/28/2019	\$25,734,823.79	\$29,043,844.20	(\$3,309,020.41)
8	03/31/2019	\$16,548,385.34	\$27,337,583.28	(\$10,789,197.94)
9	04/30/2019	\$20,508,348.59	\$29,534,947.01	(\$9,026,598.42)
10	05/31/2019	\$89,102,085.61	\$36,728,474.91	\$52,373,610.70
11	06/30/2019	\$45,733,196.26	\$41,057,162.97	\$4,676,033.29
12	07/31/2019	\$28,962,367.65	\$32,115,824.92	(\$3,153,457.27)
13	08/31/2019	\$27,149,309.89	\$30,267,442.20	(\$3,118,132.31)
14	09/30/2019	\$20,715,835.31	\$26,719,598.11	(\$6,003,762.80)
15	10/31/2019	\$26,003,560.74	\$32,235,031.27	(\$6,231,470.53)
16	11/30/2019	\$62,252,076.52	\$37,799,795.37	\$24,452,281.15
17	12/31/2019	\$29,319,020.67	\$40,322,210.03	(\$11,003,189.36)
18	01/31/2020	\$28,241,721.32	\$43,668,419.60	(\$15,426,698.28)
19	02/29/2020	\$31,291,231.95	\$34,078,791.63	(\$2,787,559.68)
20	03/31/2020	\$19,500,350.84	\$37,131,753.46	(\$17,631,402.62)
21	04/30/2020	\$16,677,064.70	\$26,304,041.58	(\$9,626,976.88)
22	05/31/2020	\$88,324,955.64	\$48,333,158.15	\$39,991,797.49
23	06/30/2020	\$52,111,610.18	\$46,363,012.78	\$5,748,597.40
24	07/31/2020	\$33,638,613.02	\$34,979,405.09	(\$1,340,792.07)
25	08/31/2020	\$28,346,100.41	\$31,194,182.34	(\$2,848,081.93)
26	09/30/2020	\$22,215,127.23	\$32,450,056.41	(\$10,234,929.18)
27	10/31/2020	\$20,081,784.50	\$35,741,768.07	(\$15,659,983.57)
28	11/30/2020	\$62,542,916.58	\$36,943,063.72	\$25,599,852.86
29	12/31/2020	\$30,429,996.34	\$42,419,717.79	(\$11,989,721.45)
30	01/31/2021	\$30,074,891.47	\$43,632,363.40	(\$13,557,471.93)
31	02/28/2021	\$31,592,189.05	\$34,700,203.72	(\$3,108,014.67)
32	03/31/2021	\$20,648,902.89	\$34,525,669.42	(\$13,876,766.53)
33	04/30/2021	\$30,150,467.58	\$37,415,760.79	(\$7,265,293.21)
34	05/31/2021	\$99,478,439.49	\$48,720,733.83	\$50,757,705.66
35	06/30/2021	\$44,395,717.46	\$43,679,333.78	\$716,383.68
36	07/31/2021	\$37,275,538.69	\$34,980,269.97	\$2,295,268.72

Approaches for Determining Portfolio Duration

Cash Flow Based Approach
ALM Analysis
Step 1 - Liquidity Profile

Institution Name	Sample City
Portfolio Balance	$\$ 300,000,000.00$
Primary Liquidity	$\$ 60,000,000.00$
Analysis Date	$07 / 31 / 2021$

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis
 Step 1 - Liquidity Profile

Liquidity Buffer	1.50
Liquidity $\%$	17.50%

Rolling Liquidity Evaluation	36	
	Value	Date
Minimum Balance	\$25,006,930.66	
Maximum Balance	\$90,023,564.27	
Maximum Drawdown	(\$34,993,069.34)	4/30/21
Required Liquidity		Multiplier
Strategic Primary Liquidity	\$34,993,069.34	1.00x / 11.7\%
Strategic Book Liquidity	\$34,993,069.34	1.00x / 11.7\%
Strategic Total Liquidity	\$69,986,138.68	2.00x / 23.3\%
Actual Liquidity		Multiplier
Actual Primary Liquidity	\$60,000,000.00	1.71x / 20.0\%
Actual Book Liquidity	\$0.00	0.00x/0.0\%
Actual Total Liquidity	\$60,000,000.00	1.71x / 20.0\%
Investable Liquidity		\%Change
Investable Primary Liquidity	\$25,006,930.66	41.68\%
Investable Book Liquidity	(\$34,993,069.34)	N/A
Total Investable Liquidity	(\$9,986,138.68)	N/A

Approaches for Determining Portfolio Duration

Cash Flow Based Approach ALM Analysis
 Step 2 - Projected Cash Flows

Using your own assumptions or average/worst case cash flow projections, we can establish a liability ladder to measure against.

These projections are the net inflow and outflow expectations laddered over the policy limited timeframe of the portfolio.

Projected Net Cash Flows by Year		Worst Outflow	Average Outflow	User Outflow
1	August	(\$3,118,132.31)	(\$2,816,016.20)	
	September	(\$10,234,929.18)	(\$5,986,214.20)	
	October	(\$15,659,983.57)	(\$8,049,693.21)	
	November	\$22,343,380.84	\$24,131,838.28	
	December	(\$12,462,614.70)	(\$11,818,508.50)	
	January	(\$15,426,698.28)	($\$ 14,084,082.35$)	
	February	(\$3,309,020.41)	(\$3,068,198.25)	
	March	(\$17,631,402.62)	(\$14,099,122.36)	
	April	(\$9,626,976.88)	(\$8,639,622.84)	
	May	\$39,991,797.49	\$47,707,704.62	
	June	\$716,383.68	\$3,713,671.46	
	July	(\$3,153,457.27)	(\$732,993.54)	
2	August	(\$3,118,132.31)	(\$2,816,016.20)	
	September	(\$10,234,929.18)	(\$5,986,214.20)	
	October	(\$15,659,983.57)	(\$8,049,693.21)	
	November	\$22,343,380.84	\$24,131,838.28	
	December	(\$12,462,614.70)	(\$11,818,508.50)	
	January	(\$15,426,698.28)	($\$ 14,084,082.35$)	
	February	(\$3,309,020.41)	(\$3,068,198.25)	
	March	(\$17,631,402.62)	(\$14,099,122.36)	
	April	(\$9,626,976.88)	(\$8,639,622.84)	
	May	\$39,991,797.49	\$47,707,704.62	
	June	\$716,383.68	\$3,713,671.46	
	July	(\$3,153,457.27)	(\$732,993.54)	
3	August	(\$3,118,132.31)	(\$2,816,016.20)	
	September	(\$10,234,929.18)	(\$5,986,214.20)	
	October	(\$15,659,983.57)	(\$8,049,693.21)	
	November	\$22,343,380.84	\$24,131,838.28	
	December	(\$12,462,614.70)	(\$11,818,508.50)	
	January	(\$15,426,698.28)	(\$14,084,082.35)	
	February	(\$3,309,020.41)	(\$3,068,198.25)	
	March	(\$17,631,402.62)	(\$14,099,122.36)	
	April	(\$9,626,976.88)	(\$8,639,622.84)	
	May	\$39,991,797.49	\$47,707,704.62	
	June	\$716,383.68	\$3,713,671.46	
	July	(\$3,153,457.27)	(\$732,993.54)	

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Year 1 Modified Monthly Duration = 5.815/(1+(Wtd Avg Tsy yield/12))=5.810 Year 1 Annualized Modified Duration $=5.810 / 12=.484$

Step 3 - DCF/Duration Analysis of Cash Flows

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 3 - DCF/Duration Analysis of Cash Flows

Once the annualized duration's are calculated, we now weight each year based on our preference of coverage of each year's total liabilities.

Duration Optimization Values by Year		
1	Annualized Duration	0.484
2	Annualized Duration	1.483
3	Annualized Duration	2.481
4	Annualized Duration	3.480
5	Annualized Duration	4.477

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 3 - DCF/Duration Analysis of Cash Flows

The total immunization weights for each year should create a portfolio that is 100% immunized relative to the portfolio size.

Duration Optimization Values by Year			
1	Sum Present Value of Outflows	\$68,937,604.13	
	Sum of Asset Matched Present Values	\$62,043,843.72	
	Asset Matched Weight in Portfolio	20.681\%	
	Annual Total Liquidity Coverage Required	\$6,893,760.41	
	Annualized Duration	0.484	
	Weighted Duration	0.100	
2	Sum Present Value of Outflows	\$68,038,451.40	
	Sum of Asset Matched Present Values	\$47,967,108.24	
	Asset Matched Weight in Portfolio	15.989\%	
	Annual Total Liquidity Coverage Required	\$20,071,343.16	
	Annualized Duration	1.483	
	Weighted Duration	0.237	
	Sum Present Value of Outflows	\$66,942,361.12	
3	Sum of Asset Matched Present Values	\$46,859,652.79	
	Asset Matched Weight in Portfolio	15.620\%	
	Annual Total Liquidity Coverage Required	\$20,082,708.34	
	Annualized Duration	2.481	
	Weighted Duration	0.388	

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 3 - DCF/Duration Analysis of Cash Flows

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 3 - DCF/Duration Analysis of Cash Flows

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis
Step 3 - DCF/Duration Analysis of Cash Flows

Duration Estimation and Allocation Bucket Approximation	
Starting Liquidity	$\$ 52,500,000.00$
1Yr Min Liquidity	$\$ 47,360,819.51$
Weighted Average Cash Flow Duration	1.92
Cash (Liquidity Profile)	$\mathbf{1 7 . 5 0 \%}$
$\mathbf{0 - 1 Y r}$	$\mathbf{2 0 . 6 8 \%}$
$1-3 \mathrm{Yr}$	$\mathbf{3 1 . 6 1 \%}$
$3-5 \mathrm{Yr}$	$\mathbf{3 0 . 2 1 \%}$

Duration Optimization Values by Year

1	Sum of Asset Matched Present Values	$\$ 62,043,843.72$
	Weighted Duration	0.100
2	Sum of Asset Matched Present vatues	-\$47,967,108.24
	Weighted Duration	0.237
	Sum of Asset Matched Present Values	-\$46,859,652.79
	Weighted Duration	0.388
4	Sum of Asset Matched Present Values	-\$45,889,528.29
	Weighted Duration	0.532
5	Sum of Asset Matched Present	\$44,732,022.07
	Values	
	Weighted Duration	0.668

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

		NetFlow	PV NegFlow	Assets Needed	1Yr Liquidity Change	1Yr Liquidity Rolling Balance
1	August	(\$2,816,016.20)	\$2,813,797.84	\$2,532,418	(\$281,380)	\$52,218,620
	September	(\$5,986,214.20)	\$5,976,786.48	\$5,379,108	(\$597,679)	\$51,620,942
	October	(\$8,049,693.21)	\$8,030,684.44	\$7,227,616	(\$803,068)	\$50,817,873
	November	\$24,131,838.28			\$1,682,127	\$52,500,000
	December	(\$11,818,508.50)	\$11,767,443.55	\$10,590,699	($\$ 1,176,744$)	\$51,323,256
	January	(\$14,084,082.35)	\$14,011,089.19	\$12,609,980	($\$ 1,401,109$)	\$49,922,147
	February	$(\$ 3,068,198.25)$	\$3,048,568.85	\$2,743,712	(\$304,857)	\$49,617,290
	March	(\$14,099,122.36)	\$13,996,081.63	\$12,596,473	(\$1,399,608)	\$48,217,682
	April	(\$8,639,622.84)	\$8,568,621.70	\$7,711,760	$(\$ 856,862)$	\$47,360,820
	May	\$47,707,704.62			\$5,139,180	\$52,500,000
	June	\$3,713,671.46				\$52,500,000
	July	(\$732,993.54)	\$724,530.44	\$652,077	(\$72,453)	\$52,427,547
2	August	(\$2,816,016.20)	\$2,779,866.49	\$1,959,806		
	September	(\$5,986,214.20)	\$5,903,497.88	\$4,161,966		
	October	(\$8,049,693.21)	\$7,930,578.28	\$5,591,058		
	November	\$24,131,838.28				
	December	(\$11,818,508.50)	\$11,615,346.67	\$8,188,819		
	January	(\$14,084,082.35)	\$13,827,863.69	\$9,748,644		
	February	($\$ 3,068,198.25$)	\$3,007,817.97	\$2,120,512		
	March	(\$14,099,122.36)	\$13,807,209.12	\$9,734,082		
	April	(\$8,639,622.84)	\$8,451,898.98	\$5,958,589		
	May	\$47,707,704.62				
	June	\$3,713,671.46				
	July	(\$732,993.54)	\$714,372.32	\$503,632		
3	August	(\$2,816,016.20)	\$2,738,872.78	\$1,917,211		
	September	(\$5,986,214.20)	\$5,815,759.42	\$4,071,032		
	October	($\$ 8,049,693.21$)	\$7,811,797.51	\$5,468,258		
	November	\$24,131,838.28				
	December	(\$11,818,508.50)	\$11,430,879.00	\$8,001,615		
	January	(\$14,084,082.35)	\$13,606,489.65	\$9,524,543		
	February	$(\$ 3,068,198.25)$	\$2,957,182.76	\$2,070,028		
	March	(\$14,099,122.36)	\$13,572,833.72	\$9,500,984		
	April	(\$8,639,622.84)	\$8,307,243.38	\$5,815,070		
	May	\$47,707,704.62				
	June	\$3,713,671.46				
	July	(\$732,993.54)	\$701,302.90	\$490,912		

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Case Study: City and County of San Francisco

CCSF Investment Pool

- CCSF Investment Pool currently is $\$ 14.7$ billion
- Many different participants both discretionary and non-discretionary with 13 major participants
- Monthly apportionment to each participant
- Consists of operating reserves and bond issuance proceeds

Investment Strategy

- Focus is on Safety of Principal and Liquidity - return is considered after the first two mandates are satisfied
- Emphasis on Asset/Liability Management - matching asset maturities with cash outflows
- Maintaining a consistent average maturity consistent with cashflow profile - not market timing
- Income generation is key - not total return

Case Study: City and County of San Francisco

CA Government Code 53600.5

Objectives

When investing, reinvesting, purchasing, acquiring, exchanging, selling, or managing public funds, the primary objective of a trustee shall be to safeguard the principal of the funds under its control. The secondary objective shall be to meet the liquidity needs of the depositor. The third objective shall be to achieve a return on the funds under its control.

Case Study: City and County of San Francisco

Focus on Cash Forecasting and Cash Flow Management

Case Study: City and County of San Francisco

Historic Monthly Net Cash Flows

Case Study: City and County of San Francisco

Historic Monthly Net Cash Flows By Year

Historical Net Cash Flow by Year	2020				2021					
January	$(\$ 448,647,971.30)$	$(\$ 152,567,793.13)$	$(\$ 439,872,611.00)$							
February	$(\$ 7,539,007.66)$	$(\$ 424,131,996.20)$	$(\$ 16,209,979.34)$							
March	$\$ 224,362,201.75$	$\$ 558,057,207.64$	$\$ 302,531,367.33$							
April	$\$ 391,223,723.90$	$\$ 772,652,422.72$	$\$ 1,016,711,651.48$							
May	$\$ 130,361,300.30$	$\$ 420,298,800.07$	$\$ 120,346,417.41$							
July	$(\$ 559,741,656.00)$	$(\$ 478,948,512.72)$	$(\$ 167,005,356.90)$							
August	$(\$ 869,500,897.70)$	$(\$ 888,436,677.20)$	$(\$ 605,180,069.90)$							
September	$\$ 20,319,151.31)$	$\$ 279,306,180.50$	$(\$ 558,558,396.91)$							
October	$\$ 25,990,625.74$	$\$ 17,904,953.55$	$(\$ 134,221,025.12)$							
November	$\$ 270,025,553.90$	$\$ 760,418,717.00$	$\$ 543,970,916.97$							
December	$\$ 1,215,365,138.10$	$\$ 664,570,791.80$	$\$ 1,032,680,667.38$							

Case Study: City and County of San Francisco

Projected Cash Flows

Projected Net Cash Flows by Year		Worst Outflow	Average Outflow	User Outflow
1	January	(\$448,647,971.30)	(\$347,029,458.48)	
	February	(\$424,131,996.20)	(\$149,293,661.07)	
	March	\$224,362,201.75	\$361,650,258.91	
	April	\$391,223,723.90	\$726,862,599.37	
	May	\$120,346,417.41	\$223,668,839.26	
	June	(\$559,741,656.00)	(\$401,898,508.54)	
	July	(\$888,436,677.20)	(\$787,705,881.60)	
	August	(\$558,558,396.91)	(\$99,857,122.57)	
	September	(\$299,599,809.30)	(\$152,654,722.35)	
	October	(\$134,221,025.12)	(\$30,108,481.94)	
	November	\$270,025,553.90	\$524,805,062.62	
	December	\$664,570,791.80	\$970,872,199.09	
2	January	(\$448,647,971.30)	(\$347,029,458.48)	
	February	(\$424,131,996.20)	(\$149,293,661.07)	
	March	\$224,362,201.75	\$361,650,258.91	
	April	\$391,223,723.90	\$726,862,599.37	
	May	\$120,346,417.41	\$223,668,839.26	
	June	(\$559,741,656.00)	(\$401,898,508.54)	
	July	(\$888,436,677.20)	(\$787,705,881.60)	
	August	(\$558,558,396.91)	(\$99,857,122.57)	
	September	(\$299,599,809.30)	(\$152,654,722.35)	
	October	(\$134,221,025.12)	(\$30,108,481.94)	
	November	\$270,025,553.90	\$524,805,062.62	
	December	\$664,570,791.80	\$970,872,199.09	
3	January	(\$448,647,971.30)	(\$347,029,458.48)	
	February	(\$424,131,996.20)	(\$149,293,661.07)	
	March	\$224,362,201.75	\$361,650,258.91	
	April	\$391,223,723.90	\$726,862,599.37	
	May	\$120,346,417.41	\$223,668,839.26	
	June	(\$559,741,656.00)	(\$401,898,508.54)	
	July	(\$888,436,677.20)	(\$787,705,881.60)	
	August	(\$558,558,396.91)	(\$99,857,122.57)	
	September	(\$299,599,809.30)	(\$152,654,722.35)	
	October	(\$134,221,025.12)	(\$30,108,481.94)	
	November	\$270,025,553.90	\$524,805,062.62	
	December	\$664,570,791.80	\$970,872,199.09	

Projected Net Cash Flows by Year		Worst Outflow	Average Outflow	User Outflow
4	January	(\$448,647,971.30)	(\$347,029,458.48)	
	February	(\$424,131,996.20)	(\$149,293,661.07)	
	March	\$224,362,201.75	\$361,650,258.91	
	April	\$391,223,723.90	\$726,862,599.37	
	May	\$120,346,417.41	\$223,668,839.26	
	June	(\$559,741,656.00)	(\$401,898,508.54)	
	July	(\$888,436,677.20)	(\$787,705,881.60)	
	August	(\$558,558,396.91)	(\$99,857,122.57)	
	September	(\$299,599,809.30)	(\$152,654,722.35)	
	October	(\$134,221,025.12)	(\$30,108,481.94)	
	November	\$270,025,553.90	\$524,805,062.62	
	December	\$664,570,791.80	\$970,872,199.09	
5	January	(\$448,647,971.30)	(\$347,029,458.48)	
	February	(\$424,131,996.20)	(\$149,293,661.07)	
	March	\$224,362,201.75	\$361,650,258.91	
	April	\$391,223,723.90	\$726,862,599.37	
	May	\$120,346,417.41	\$223,668,839.26	
	June	(\$559,741,656.00)	(\$401,898,508.54)	
	July	(\$888,436,677.20)	(\$787,705,881.60)	
	August	(\$558,558,396.91)	(\$99,857,122.57)	
	September	(\$299,599,809.30)	(\$152,654,722.35)	
	October	(\$134,221,025.12)	(\$30,108,481.94)	
	November	\$270,025,553.90	\$524,805,062.62	
	December	\$664,570,791.80	\$970,872,199.09	

Case Study: City and County of San Francisco

Average Outflow Scenario

Case Study: City and County of San Francisco

Average Outflow Scenario

Duration Optimization Values by Year					
1	Sum Present Value of Outflows	\$1,926,462,807.38	4	Sum Present Value of Outflows	\$1,710,172,792.44
	Sum of Asset Matched Present Values	\$3,371,309,912.92		Sum of Asset Matched Present Values	\$2,565,259,188.67
	Asset Matched Weight in Portfolio	22.570\%		Asset Matched Weight in Portfolio	17.173\%
	Annual Total Liquidity Coverage Required	(\$1,444,847,105.54)		Annual Total Liquidity Coverage Required	(\$855,086,396.22)
	Annualized Duration	0.463		Annualized Duration	3.454
	Weighted Duration	0.105		Weighted Duration	0.593
2	Sum Present Value of Outflows	\$1,842,237,143.79	5	Sum Present Value of Outflows	\$1,651,944,767.24
	Sum of Asset Matched Present Values	\$2,763,355,715.69		Sum of Asset Matched Present Values	\$2,382,104,354.35
	Asset Matched Weight in Portfolio	18.500\%		Asset Matched Weight in Portfolio	15.947\%
	Annual Total Liquidity Coverage Required	(\$921,118,571.90)		Annual Total Liquidity Coverage Required	(\$730,159,587.12)
	Annualized Duration	1.460		Annualized Duration	4.451
	Weighted Duration	0.270		Weighted Duration	0.710
3	Sum Present Value of Outflows	\$1,773,496,994.48			
	Sum of Asset Matched Present Values	\$2,660,245,491.72			
	Asset Matched Weight in Portfolio	17.809\%			
	Annual Total Liquidity Coverage Required	(\$886,748,497.24)			
	Annualized Duration	2.457			
	Weighted Duration	0.438			

Case Study: City and County of San Francisco

Average Outflow Scenario

Duration Optimization Calcs		NetFlow	NegNetFlow	Hedge Security	PV Rate	Period	PV NegFlow	PV Factor	Weight	Assets Needed	1Yr Liquidity Change	1Yr Liquidity Rolling Balance
1	January	(\$347,029,458.48)	(\$347,029,458.48)	3Mo Tsy	4.214\%	1	\$345,815,071.22	0.997	17.95\%	\$605,176,375	\$259,361,303	\$1,194,992,082
	February	(\$149,293,661.07)	(\$149,293,661.07)	3Mo Tsy	4.214\%	2	\$148,250,619.35	0.993	7.70\%	\$259,438,584	\$111,187,965	\$1,306,180,046
	March	\$361,650,258.91									(\$111,187,965)	\$1,194,992,082
	April	\$726,862,599.37										\$1,194,992,082
	May	\$223,668,839.26										\$1,194,992,082
	June	(\$401,898,508.54)	(\$401,898,508.54)	6Mo Tsy	4.602\%	6	\$392,773,692.37	0.977	20.39\%	\$687,353,962	\$294,580,269	\$1,489,572,351
	July	(\$787,705,881.60)	(\$787,705,881.60)	9 Mo Tsy	4.687\%	7	\$766,503,027.86	0.973	39.79\%	\$1,341,380,299	\$574,877,271	\$2,064,449,622
	August	(\$99,857,122.57)	(\$99,857,122.57)	9 Mo Tsy	4.687\%	8	\$96,791,216.09	0.969	5.02\%	\$169,384,628	\$72,593,412	\$2,137,043,034
	September	(\$152,654,722.35)	(\$152,654,722.35)	9Mo Tsy	4.687\%	9	\$147,392,116.39	0.966	7.65\%	\$257,936,204	\$110,544,087	\$2,247,587,121
	October	$(\$ 30,108,481.94)$	(\$30,108,481.94)	1.00Yr Tsy	4.772\%	10	\$28,937,064.10	0.961	1.50\%	\$50,639,862	\$21,702,798	\$2,269,289,919
	November	\$524,805,062.62									(\$1,074,297,838)	\$1,194,992,082
	December	\$970,872,199.09										\$1,194,992,082
2	January	(\$347,029,458.48)	(\$347,029,458.48)	1.25Yr Tsy	4.672\%	13	\$329,934,206.76	0.951	17.91\%	\$494,901,310		
	February	(\$149,293,661.07)	(\$149,293,661.07)	1.25Yr Tsy	4.672\%	14	\$141,388,717.42	0.947	7.67\%	\$212,083,076		
	March	\$361,650,258.91										
	April	\$726,862,599.37										
	May	\$223,668,839.26										
	June	(\$401,898,508.54)	(\$401,898,508.54)	1.50Yr Tsy	4.573\%	18	\$375,304,875.55	0.934	20.37\%	\$562,957,313		
	July	(\$787,705,881.60)	(\$787,705,881.60)	1.75Yr Tsy	4.473\%	19	\$733,940,546.76	0.932	39.84\%	\$1,100,910,820		
	August	(\$99,857,122.57)	(\$99,857,122.57)	1.75 Yr Tsy	4.473\%	20	\$92,695,762.68	0.928	5.03\%	\$139,043,644		
	September	(\$152,654,722.35)	(\$152,654,722.35)	1.75Yr Tsy	4.473\%	21	\$141,180,631.44	0.925	7.66\%	\$211,770,947		
	October	(\$30,108,481.94)	(\$30,108,481.94)	2.00Yr Tsy	4.374\%	22	\$27,792,403.18	0.923	1.51\%	\$41,688,605		
	November	\$524,805,062.62										
	December	\$970,872,199.09										
3	January	(\$347,029,458.48)	(\$347,029,458.48)	2.25Yr Tsy	4.317\%	25	\$317,234,530.35	0.914	17.89\%	\$475,851,796		
	February	(\$149,293,661.07)	(\$149,293,661.07)	2.25Yr Tsy	4.317\%	26	\$135,986,577.43	0.911	7.67\%	\$203,979,866		
	March	\$361,650,258.91										
	April	\$726,862,599.37										
	May	\$223,668,839.26										
	June	(\$401,898,508.54)	(\$401,898,508.54)	2.50Yr Tsy	4.259\%	30	\$361,371,626.60	0.899	20.38\%	\$542,057,440		
	July	(\$787,705,881.60)	(\$787,705,881.60)	2.75Yr Tsy	4.202\%	31	\$706,812,862.20	0.897	39.85\%	\$1,060,219,293		
	August	(\$99,857,122.57)	(\$99,857,122.57)	2.75 Yr Tsy	4.202\%	32	\$89,289,697.20	0.894	5.03\%	\$133,934,546		
	September	(\$152,654,722.35)	(\$152,654,722.35)	2.75Yr Tsy	4.202\%	33	\$136,023,671.60	0.891	7.67\%	\$204,035,507		
	October	(\$30,108,481.94)	(\$30,108,481.94)	3.00 Yr Tsy	4.145\%	34	\$26,778,029.09	0.889	1.51\%	\$40,167,044		
	November	\$524,805,062.62										
	December	\$970,872,199.09										

Case Study: City and County of San Francisco

Average Outflow Scenario

Duration Optimization Calcs		NetFlow	NegNetFlow	Hedge Security	PV Rate	Period	PV NegFlow	PV Factor	Weight	Assets Needed	1Yr Liquidity Change	1Yr Liquidity Rolling Balance
4	January	(\$347,029,458.48)	(\$347,029,458.48)	3.25Yr Tsy	4.111\%	37	\$305,781,399.31	0.881	17.88\%	\$458,672,099		
	February	(\$149,293,661.07)	(\$149,293,661.07)	3.25Yr Tsy	4.111\%	38	\$131,099,432.45	0.878	7.67\%	\$196,649,149		
	March	\$361,650,258.91										
	April	\$726,862,599.37										
	May	\$223,668,839.26										
	June	(\$401,898,508.54)	(\$401,898,508.54)	3.50Yr Tsy	4.078\%	42	\$348,531,636.51	0.867	20.38\%	\$522,797,455		
	July	(\$787,705,881.60)	(\$787,705,881.60)	3.75Yr Tsy	4.044\%	43	\$681,610,513.16	0.865	39.86\%	\$1,022,415,770		
	August	(\$99,857,122.57)	(\$99,857,122.57)	3.75Yr Tsy	4.044\%	44	\$86,117,245.02	0.862	5.04\%	\$129,175,868		
	September	(\$152,654,722.35)	(\$152,654,722.35)	3.75Yr Tsy	4.044\%	45	\$131,207,968.75	0.860	7.67\%	\$196,811,953		
	October	(\$30,108,481.94)	(\$30,108,481.94)	4.00Yr Tsy	4.011\%	46	\$25,824,597.23	0.858	1.51\%	\$38,736,896		
	November	\$524,805,062.62										
	December	\$970,872,199.09										
5	January	(\$347,029,458.48)	(\$347,029,458.48)	4.25Yr Tsy	3.977\%	49	\$295,091,067.47	0.850	17.86\%	\$425,521,319		
	February	(\$149,293,661.07)	(\$149,293,661.07)	4.25Yr Tsy	3.977\%	50	\$126,530,185.46	0.848	7.66\%	\$182,456,527		
	March	\$361,650,258.91										
	April	\$726,862,599.37										
	May	\$223,668,839.26										
	June	(\$401,898,508.54)	(\$401,898,508.54)	4.50Yr Tsy	3.944\%	54	\$336,646,371.96	0.838	20.38\%	\$485,444,068		
	July	(\$787,705,881.60)	(\$787,705,881.60)	4.75Yr Tsy	3.910\%	55	\$658,660,197.34	0.836	39.87\%	\$949,788,005		
	August	(\$99,857,122.57)	(\$99,857,122.57)	4.75Yr Tsy	3.910\%	56	\$83,226,877.94	0.833	5.04\%	\$120,013,158		
	September	(\$152,654,722.35)	(\$152,654,722.35)	4.75Yr Tsy	3.910\%	57	\$126,818,328.21	0.831	7.68\%	\$182,872,029		
	October	(\$30,108,481.94)	(\$30,108,481.94)	5.00Yr Tsy	3.877\%	58	\$24,971,738.85	0.829	1.51\%	\$36,009,247		
	November	\$524,805,062.62										
	December	\$970,872,199.09										

Case Study: City and County of San Francisco

Worst Outflow Scenario

Case Study: City and County of San Francisco

Worst Outflow Scenario

Duration Optimization Values by Year					
1	Sum Present Value of Outflows	\$3,239,481,723.32	4	Sum Present Value of Outflows	\$2,876,289,956.04
	Sum of Asset Matched Present Values	\$3,239,481,723.32		Sum of Asset Matched Present Values	\$2,444,846,462.63
	Asset Matched Weight in Portfolio	21.687\%		Asset Matched Weight in Portfolio	16.367\%
	Annualized Duration	0.483		Annual Total Liquidity Coverage Required	\$431,443,493.41
	Weighted Duration	0.105		Annualized Duration	3.474
2	Sum Present Value of Outflows	\$3,098,198,627.66		Weighted Duration	0.569
	Sum of Asset Matched Present Values	\$3,098,198,627.66	5	Sum Present Value of Outflows	\$2,778,465,498.52
	Asset Matched Weight in Portfolio	20.741\%		Sum of Asset Matched Present Values	\$1,976,878,202.19
	Annualized Duration	1.480		Asset Matched Weight in Portfolio	13.234\%
	Weighted Duration	0.307		Annual Total Liquidity Coverage Required	\$801,587,296.32
3	Sum Present Value of Outflows	\$2,982,735,812.34		Annualized Duration	4.471
	Sum of Asset Matched Present Values	\$2,982,735,812.34		Weighted Duration	0.592
	Asset Matched Weight in Portfolio	19.968\%			
	Annualized Duration	2.477			
	Weighted Duration	0.495			

Case Study: City and County of San Francisco

Worst Outflow Scenario

Duration Optimization Calcs		NetFlow	NegNetFlow	Hedge Security	PV Rate	Period	PV NegFlow	PV Factor	Weight	Assets Needed	1Yr Liquidity Change	1Yr Liquidity Rolling Balance
1	January	(\$448,647,971.30)	(\$448,647,971.30)	3Mo Tsy	4.214\%	1	\$447,077,982.45	0.997	13.80\%	\$447,077,982		\$1,194,992,082
	February	(\$424,131,996.20)	(\$424,131,996.20)	3Mo Tsy	4.214\%	2	\$421,168,793.60	0.993	13.00\%	\$421,168,794		\$1,194,992,082
	March	\$224,362,201.75										\$1,194,992,082
	April	\$391,223,723.90										\$1,194,992,082
	May	\$120,346,417.41										\$1,194,992,082
	June	(\$559,741,656.00)	(\$559,741,656.00)	6Mo Tsy	4.602\%	6	\$547,033,124.85	0.977	16.89\%	\$547,033,125		\$1,194,992,082
	July	(\$888,436,677.20)	(\$888,436,677.20)	9 Mo Tsy	4.687\%	7	\$864,522,430.32	0.973	26.69\%	\$864,522,430		\$1,194,992,082
	August	(\$558,558,396.91)	(\$558,558,396.91)	9 Mo Tsy	4.687\%	8	\$541,409,016.20	0.969	16.71\%	\$541,409,016		\$1,194,992,082
	September	(\$299,599,809.30)	(\$299,599,809.30)	9 Mo Tsy	4.687\%	9	\$289,271,430.87	0.966	8.93\%	\$289,271,431		\$1,194,992,082
	October	(\$134,221,025.12)	(\$134,221,025.12)	1.00Yr Tsy	4.772\%	10	\$128,998,945.02	0.961	3.98\%	\$128,998,945		\$1,194,992,082
	November	\$270,025,553.90										\$1,194,992,082
	December	\$664,570,791.80										\$1,194,992,082
2	January	(\$448,647,971.30)	(\$448,647,971.30)	1.25Yr Tsy	4.672\%	13	\$426,546,821.64	0.951	13.77\%	\$426,546,822		
	February	(\$424,131,996.20)	(\$424,131,996.20)	1.25Yr Tsy	4.672\%	14	\$401,674,649.34	0.947	12.96\%	\$401,674,649		
	March	\$224,362,201.75										
	April	\$391,223,723.90										
	May	\$120,346,417.41										
	June	(\$559,741,656.00)	(\$559,741,656.00)	1.50Yr Tsy	4.573\%	18	\$522,703,538.54	0.934	16.87\%	\$522,703,539		
	July	(\$888,436,677.20)	(\$888,436,677.20)	1.75Yr Tsy	4.473\%	19	\$827,795,901.82	0.932	26.72\%	\$827,795,902		
	August	(\$558,558,396.91)	(\$558,558,396.91)	1.75 Yr Tsy	4.473\%	20	\$518,500,786.62	0.928	16.74\%	\$518,500,787		
	September	(\$299,599,809.30)	(\$299,599,809.30)	1.75Yr Tsy	4.473\%	21	\$277,080,784.69	0.925	8.94\%	\$277,080,785		
	October	(\$134,221,025.12)	(\$134,221,025.12)	2.00Yr Tsy	4.374\%	22	\$123,896,145.01	0.923	4.00\%	\$123,896,145		
	November	\$270,025,553.90										
	December	\$664,570,791.80										
3	January	(\$448,647,971.30)	(\$448,647,971.30)	2.25Yr Tsy	4.317\%	25	\$410,128,376.69	0.914	13.75\%	\$410,128,377		
	February	(\$424,131,996.20)	(\$424,131,996.20)	2.25Yr Tsy	4.317\%	26	\$386,327,578.34	0.911	12.95\%	\$386,327,578		
	March	\$224,362,201.75										
	April	\$391,223,723.90										
	May	\$120,346,417.41										
	June	(\$559,741,656.00)	(\$559,741,656.00)	2.50Yr Tsy	4.259\%	30	\$503,298,092.45	0.899	16.87\%	\$503,298,092		
	July	(\$888,436,677.20)	(\$888,436,677.20)	2.75Yr Tsy	4.202\%	31	\$797,199,164.52	0.897	26.73\%	\$797,199,165		
	August	(\$558,558,396.91)	(\$558,558,396.91)	2.75 Yr Tsy	4.202\%	32	\$499,448,700.75	0.894	16.74\%	\$499,448,701		
	September	(\$299,599,809.30)	(\$299,599,809.30)	2.75Yr Tsy	4.202\%	33	\$266,959,747.10	0.891	8.95\%	\$266,959,747		
	October	(\$134,221,025.12)	(\$134,221,025.12)	3.00 Yr Tsy	4.145\%	34	\$119,374,152.49	0.889	4.00\%	\$119,374,152		
	November	\$270,025,553.90										
	December	\$664,570,791.80										

Case Study: City and County of San Francisco

Worst Outflow Scenario

Duration Optimization Calcs		NetFlow	NegNetFlow	Hedge Security	PV Rate	Period	PV NegFlow	PV Factor	Weight	Assets Needed	1Yr Liquidity Change	1Yr Liquidity Rolling Balance
4	January	(\$448,647,971.30)	(\$448,647,971.30)	3.25Yr Tsy	4.111\%	37	\$395,321,495.37	0.881	13.74\%	\$336,023,271		
	February	(\$424,131,996.20)	(\$424,131,996.20)	3.25Yr Tsy	4.111\%	38	\$372,443,569.21	0.878	12.95\%	\$316,577,034		
	March	\$224,362,201.75										
	April	\$391,223,723.90										
	May	\$120,346,417.41										
	June	(\$559,741,656.00)	(\$559,741,656.00)	3.50Yr Tsy	4.078\%	42	\$485,415,275.86	0.867	16.88\%	\$412,602,984		
	July	(\$888,436,677.20)	(\$888,436,677.20)	3.75Yr Tsy	4.044\%	43	\$768,773,972.12	0.865	26.73\%	\$653,457,876		
	August	(\$558,558,396.91)	(\$558,558,396.91)	3.75Yr Tsy	4.044\%	44	\$481,703,348.58	0.862	16.75\%	\$409,447,846		
	September	(\$299,599,809.30)	(\$299,599,809.30)	3.75Yr Tsy	4.044\%	45	\$257,508,459.69	0.860	8.95\%	\$218,882,191		
	October	(\$134,221,025.12)	(\$134,221,025.12)	4.00Yr Tsy	4.011\%	46	\$115,123,835.22	0.858	4.00\%	\$97,855,260		
	November	\$270,025,553.90										
	December	\$664,570,791.80										
5	January	(\$448,647,971.30)	(\$448,647,971.30)	4.25Yr Tsy	3.977\%	49	\$381,500,779.07	0.850	13.73\%	\$271,437,804		
	February	(\$424,131,996.20)	(\$424,131,996.20)	4.25Yr Tsy	3.977\%	50	\$359,462,684.19	0.848	12.94\%	\$255,757,700		
	March	\$224,362,201.75										
	April	\$391,223,723.90										
	May	\$120,346,417.41										
	June	(\$559,741,656.00)	(\$559,741,656.00)	4.50Yr Tsy	3.944\%	54	\$468,862,147.34	0.838	16.87\%	\$333,595,418		
	July	(\$888,436,677.20)	(\$888,436,677.20)	4.75Yr Tsy	3.910\%	55	\$742,888,799.99	0.836	26.74\%	\$528,565,381		
	August	(\$558,558,396.91)	(\$558,558,396.91)	4.75 Yr Tsy	3.910\%	56	\$465,535,860.88	0.833	16.76\%	\$331,228,765		
	September	(\$299,599,809.30)	(\$299,599,809.30)	4.75Yr Tsy	3.910\%	57	\$248,893,361.20	0.831	8.96\%	\$177,087,626		
	October	(\$134,221,025.12)	(\$134,221,025.12)	5.00Yr Tsy	3.877\%	58	\$111,321,865.85	0.829	4.01\%	\$79,205,508		
	November	\$270,025,553.90										
	December	\$664,570,791.80										

Case Study: City and County of San Francisco

Asset-Liability Ladder (\$MM)

Case Study: City and County of San Francisco

Cash Flow Schedule

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 4 - Sector/Maturity Allocation

INDEX STATS	Annualized Total Return	Annualized Price Return	Annualized Income Return	Annualized Std Dev Total Return	Avg Yield to Worst	Std Dev Yld	Avg Eff Dur	TR Sharpe Ratio	Yld Sharpe Ratio	Main Stree Ratio \qquad	Weighted Rank
1-3 A-AAA Corp	3.010\%	(0.769\%)	3.476\%	2.427\%	2.415\%	1.750\%	1.914	0.805	0.840	0.768	1.0
1-3 Agency Clb	1.827\%	0.148\%	1.711\%	0.715\%	1.537\%	1.399\%	1.143	1.080	0.423	0.517	2.0
1-3 Supranational	2.762\%	(0.119\%)	2.842\%	1.213\%	1.774\%	1.276\%	1.921	1.408	0.649	0.431	3.0
1-3 Agency Blt	2.418\%	(0.253\%)	2.593\%	1.277\%	1.468\%	1.376\%	1.832	1.067	0.379	0.285	4.0
1-3 Municipal	2.103\%	(2.500\%)	3.529\%	1.111\%	1.310\%	0.962\%	1.811	0.943	0.379	0.201	5.0
1-3 Treasury	2.133\%	(0.061\%)	2.178\%	1.240\%	1.291\%	1.291\%	1.856	0.869	0.267	0.186	6.0
3-5 A-AAA Corp	4.280\%	0.312\%	4.100\%	3.698\%	2.948\%	1.515\%	3.665	0.872	1.321	0.546	1.0
3-5 Agency Clb	2.361\%	0.099\%	2.289\%	1.406\%	1.932\%	1.315\%	2.048	0.929	0.750	0.482	2.0
3-5 Supranational	4.323\%	0.999\%	3.706\%	2.495\%	2.397\%	1.191\%	3.712	1.310	1.218	0.391	3.0
3-5 Agency Blt	3.983\%	0.816\%	3.466\%	2.676\%	1.936\%	1.245\%	3.685	1.094	0.795	0.269	4.0
3-5 Municipal	3.228\%	(1.204\%)	3.906\%	2.388\%	1.717\%	0.905\%	3.416	0.910	0.852	0.226	5.0
3-5 Treasury	3.602\%	0.980\%	2.933\%	2.918\%	1.714\%	1.146\%	3.793	0.873	0.670	0.203	6.0

Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

Step 4 - Sector/Maturity Allocation

Duration Estimation and Allocation Bucket Approximation	
Starting Liquidity	$\$ 52,500,000.00$
1 Yr Min Liquidity	$\$ 47,360,819.51$
Weighted Average Cash Flow Duration	1.92
Cash (Liquidity Profile)	17.50%
$0-1 \mathrm{Yr}$	20.68%
$1-3 \mathrm{Yr}$	31.61%
$3-5 \mathrm{Yr}$	30.21%

[^0]
Approaches for Determining Portfolio Duration

Cash Flow Based Approach

ALM Analysis

- Uses institution's actual cash flow data to measure future liabilities and derive duration needs
- Eliminates bias and idiosyncratic problems that public entities can have with market based approaches (liquidity, sector and structure differences).
- Ensures each institution's duration is unique and not peer or market related.
- Places emphasis on timing and magnitude of investments relative to liabilities versus market based optimizations for the masses.
- Does require more data and effort to establish the projected liability stream and involves calculations that may not be familiar.
- There are opportunity costs associated by limiting the investment universe to any particular timeframe, however it can be argued that maintaining a stable duration and limiting cash balances can more than offset any costs associated with security selection constraints (without this process, cash balances tend to be higher and more conservative securities are purchased due to uncertainty).

Thank You!

If you have any questions or comments please reach out and we would be happy to discuss.
Thank you for attending!

Disclosure

This presentation is for informational purposes only. All information is assumed to be correct, but the accuracy has not been confirmed and therefore is not guaranteed to be correct. Information is obtained from third party sources that may or may not be verified. The information presented should not be used in making any investment decisions and is not a recommendation to buy, sell, implement, or change any securities or investment strategy, function, or process.
Any financial and/or investment decision should be made only after considerable research, consideration, and involvement with an experienced professional engaged for the specific purpose. All comments and discussion presented are purely based on opinion and assumptions, not fact. These assumptions may or may not be correct based on foreseen and unforeseen events.

All calculations and results presented are for discussion purposes only and should not be used for making calculations and/or decisions. The data in this presentation is unaudited.

Many factors affect performance including changes in market conditions and interest rates and in response to other economic, political, or financial developments. Investment involves risk including the possible loss of principal. No assurance can be given that the performance objectives of a given strategy will be achieved. Past performance is not an indicator of future performance or results. Any financial and/or investment decision may incur losses.

Disclosure

This presentation is for informational purposes only. All information is assumed to be correct, but the accuracy has not been confirmed and therefore is not guaranteed to be correct. Information is obtained from third party sources that may or may not be verified. The information presented should not be used in making any investment decisions and is not a recommendation to buy, sell, implement, or change any securities or investment strategy, function, or process.
Any financial and/or investment decision should be made only after considerable research, consideration, and involvement with an experienced professional engaged for the specific purpose. All comments and discussion presented are purely based on opinion and assumptions, not fact. These assumptions may or may not be correct based on foreseen and unforeseen events.

All calculations and results presented are for discussion purposes only and should not be used for making calculations and/or decisions. The data in this presentation is unaudited.

Many factors affect performance including changes in market conditions and interest rates and in response to other economic, political, or financial developments. Investment involves risk including the possible loss of principal. No assurance can be given that the performance objectives of a given strategy will be achieved. Past performance is not an indicator of future performance or results. Any financial and/or investment decision may incur losses.

Please complete the seminar evaluation and leave it on your table.

[^0]: 171 *ICE/BAML Index Data - July 2006 to July 2021

